-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutil.py
executable file
·42 lines (35 loc) · 1.61 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch.optim.lr_scheduler as lrs
def make_scheduler(my_optimizer):
# learning rate decay per N epochs
lr_decay = 200
# learning rate decay factor for step decay
gamma = 0.5
scheduler = lrs.StepLR(my_optimizer, step_size=lr_decay, gamma=gamma)
return scheduler
class LrMultiStep(object):
def __init__(self, optimizer, milestones, lr_mults, last_iter=-1):
assert len(milestones) == len(lr_mults), "{} vs {}".format(milestones, lr_mults)
self.milestones = milestones
self.lr_mults = lr_mults
self.optimizer = optimizer
self.last_iter = last_iter
for i, group in enumerate(optimizer.param_groups):
if 'lr' not in group:
raise KeyError("param 'lr' is not specified"
" in param_groups[{}] when resuming an optimizer".format(i))
def _get_lr(self):
try:
pos = self.milestones.index(self.last_iter)
except ValueError:
return list(map(lambda group: group['lr'], self.optimizer.param_groups))
except:
raise Exception("don't know what error! wtf")
return list(map(lambda group: group['lr'] * self.lr_mults[pos], self.optimizer.param_groups))
def get_lr(self):
return list(map(lambda group: group['lr'], self.optimizer.param_groups))
def step(self, this_iter=None):
if this_iter is None:
this_iter = this_iter + 1
self.last_iter = this_iter
for param_group, lr in zip(self.optimizer.param_groups, self._get_lr()):
param_group['lr'] = lr