-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfunc_savedata.py
34 lines (26 loc) · 1.46 KB
/
func_savedata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# -*- coding: utf-8 -*-
import numpy as np
import imageio
def display_current_output(train_output, traindata_label, iter00, directory_save, train_val='train'):
'''
display current results from LFattNet
and save results in /current_output
'''
sz = len(traindata_label)
train_output = np.squeeze(train_output)
if (len(traindata_label.shape) > 3 and traindata_label.shape[-1] == 9): # traindata
pad1_half = int(0.5 * (np.size(traindata_label, 1) - np.size(train_output, 1)))
train_label482 = traindata_label[:, 15:-15, 15:-15, 4, 4]
else: # valdata
pad1_half = int(0.5 * (np.size(traindata_label, 1) - np.size(train_output, 1)))
train_label482 = traindata_label[:, 15:-15, 15:-15]
train_output482 = train_output[:, 15 - pad1_half:482 + 15 - pad1_half, 15 - pad1_half:482 + 15 - pad1_half]
train_diff = np.abs(train_output482 - train_label482)
train_bp = (train_diff >= 0.07)
train_output482_all = np.zeros((2 * 482, sz * 482), np.uint8)
train_output482_all[0:482, :] = np.uint8(
25 * np.reshape(np.transpose(train_label482, (1, 0, 2)), (482, sz * 482)) + 100)
train_output482_all[482:2 * 482, :] = np.uint8(
25 * np.reshape(np.transpose(train_output482, (1, 0, 2)), (482, sz * 482)) + 100)
imageio.imsave(directory_save + '/' + train_val + '_iter%05d.jpg' % (iter00), np.squeeze(train_output482_all))
return train_diff, train_bp