-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfunc_makeinput.py
43 lines (35 loc) · 1.27 KB
/
func_makeinput.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# -*- coding: utf-8 -*-
import imageio
import numpy as np
import os
def make_epiinput(image_path,seq1,image_h,image_w,view_n,RGB):
traindata_tmp=np.zeros((1,image_h,image_w,len(view_n)),dtype=np.float32)
i=0
if(len(image_path)==1):
image_path=image_path[0]
for seq in seq1:
tmp = np.float32(imageio.imread(image_path+'/input_Cam0%.2d.png' % seq))
traindata_tmp[0,:,:,i]=(RGB[0]*tmp[:,:,0] + RGB[1]*tmp[:,:,1] + RGB[2]*tmp[:,:,2])/255
i+=1
return traindata_tmp
def make_input(image_path, image_h, image_w, view_n):
RGB = [0.299, 0.587, 0.114] ## RGB to Gray // 0.299 0.587 0.114
'''
data from http://hci-lightfield.iwr.uni-heidelberg.de/
Sample images ex: Cam000~ Cam080.png
'''
output_list = []
outut_hv_list = []
for i in range(81):
if(image_path[:12]=='hci_dataset/'):
A = make_epiinput(image_path, [i], image_h, image_w, [0], RGB)
output_list.append(A)
for i in range(36,45):
outut_hv_list.append(output_list[i])
for i in range(4,85,9):
outut_hv_list.append(output_list[i])
for i in range(0,90,10):
outut_hv_list.append(output_list[i])
for i in range(8,80,8):
outut_hv_list.append(output_list[i])
return outut_hv_list