-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
191 lines (147 loc) · 6.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from __future__ import print_function
import argparse
import os
import numpy as np
import torch
from torch.nn.functional import mse_loss
from torch.utils.data import DataLoader
from tqdm import tqdm
from data import MotionDataset
from misc import visualize
from networks import VDNet
from utils import set_cuda_devices
from utils.shell import mkdir
from utils.torch import Logger, kld_loss, load_snapshot, save_snapshot, to_np, to_var
if __name__ == '__main__':
# argument parser
parser = argparse.ArgumentParser()
# experiment
parser.add_argument('--exp', default = 'default')
parser.add_argument('--resume', default = None)
parser.add_argument('--gpu', default = '0')
# dataset
parser.add_argument('--data_path', default = None)
parser.add_argument('--workers', default = 8, type = int)
parser.add_argument('--batch', default = 32, type = int)
# adaptive beta
parser.add_argument('--beta', default = 0.001, type = float)
parser.add_argument('--max_beta', default = np.inf, type = float)
parser.add_argument('--target_loss', default = 16, type = float)
# training
parser.add_argument('--epochs', default = 128, type = int)
parser.add_argument('--snapshot', default = 8, type = int)
parser.add_argument('--learning_rate', default = 0.001, type = float)
# arguments
args = parser.parse_args()
print('==> arguments parsed')
for key in vars(args):
print('[{0}] = {1}'.format(key, getattr(args, key)))
# cuda devices
set_cuda_devices(args.gpu)
# datasets & loaders
data, loaders = {}, {}
for split in ['train', 'test']:
data[split] = MotionDataset(data_path = args.data_path, split = split)
loaders[split] = DataLoader(data[split], batch_size = args.batch, shuffle = True, num_workers = args.workers)
print('==> dataset loaded')
print('[size] = {0} + {1}'.format(len(data['train']), len(data['test'])))
# model
model = VDNet().cuda()
# optimizer
optimizer = torch.optim.Adam(model.parameters(), lr = args.learning_rate)
# experiment path
exp_path = os.path.join('exp', args.exp)
mkdir(exp_path, clean = False)
# logger
logger = Logger(exp_path)
# load snapshot
if args.resume is not None:
epoch, args.beta = load_snapshot(args.resume, model = model, optimizer = optimizer, returns = ['epoch', 'beta'])
print('==> snapshot "{0}" loaded (with beta = {1})'.format(args.resume, args.beta))
else:
epoch = 0
# iterations
for epoch in range(epoch, args.epochs):
step = epoch * len(data['train'])
print('==> epoch {0} (starting from step {1})'.format(epoch + 1, step + 1))
# training
model.train()
for inputs, targets in tqdm(loaders['train'], desc = 'train'):
inputs, targets = to_var(inputs), to_var(targets)
# forward
optimizer.zero_grad()
outputs, (mean, log_var) = model.forward(inputs, returns = ['mean', 'log_var'])
# reconstruction & kl divergence loss
loss_r = mse_loss(outputs, targets)
loss_kl = kld_loss(mean, log_var)
# overall loss
loss = loss_r + args.beta * loss_kl
# logger
logger.scalar_summary('train-loss', loss.data[0], step)
logger.scalar_summary('train-loss-r', loss_r.data[0], step)
logger.scalar_summary('train-loss-kl', loss_kl.data[0], step)
step += targets.size(0)
# backward
loss.backward()
optimizer.step()
# testing
model.eval()
loss_r, loss_kl = 0, 0
for inputs, targets in tqdm(loaders['test'], desc = 'test'):
inputs, targets = to_var(inputs, volatile = True), to_var(targets, volatile = True)
# forward
outputs, (mean, log_var) = model.forward(inputs, returns = ['mean', 'log_var'])
# reconstruction & kl divergence loss
loss_r += mse_loss(outputs, targets) * targets.size(0) / len(data['test'])
loss_kl += kld_loss(mean, log_var) * targets.size(0) / len(data['test'])
logger.scalar_summary('test-loss-r', loss_r.data[0], step)
logger.scalar_summary('test-loss-kl', loss_kl.data[0], step)
# beta
if args.target_loss is not None and loss_r.data[0] < args.target_loss and args.beta < args.max_beta:
args.beta = min(args.beta * 2, args.max_beta)
print('==> adjusted beta to {0}'.format(args.beta))
# means & log_vars
num_dists = 1024
means, log_vars = [], []
for inputs, targets in loaders['train']:
inputs, targets = to_var(inputs, volatile = True), to_var(targets, volatile = True)
# forward
outputs, (mean, log_var) = model.forward(inputs, returns = ['mean', 'log_var'])
means.extend(to_np(mean))
log_vars.extend(to_np(log_var))
if len(means) >= num_dists and len(log_vars) >= num_dists:
break
means = np.array(means[:num_dists])
log_vars = np.array(log_vars[:num_dists])
# visualization
num_samples = 4
for split in ['train', 'test']:
inputs, targets = iter(loaders[split]).next()
inputs, targets = to_var(inputs, volatile = True), to_var(targets, volatile = True)
# forward (recontruction)
outputs = model.forward(inputs)
# forward (sampling)
samples = []
for k in range(num_samples):
indices = np.random.choice(num_dists, args.batch)
sample = model.forward(inputs, mean = to_var(means[indices]), log_var = to_var(log_vars[indices]))
samples.append(sample)
# visualize
outputs = visualize(inputs, outputs)
targets = visualize(inputs, targets)
samples = [visualize(inputs, sample) for sample in samples]
inputs = visualize(inputs)
# logger
logger.image_summary('{0}-inputs'.format(split), inputs, step)
logger.image_summary('{0}-outputs'.format(split), zip(inputs, outputs), step)
logger.image_summary('{0}-targets'.format(split), zip(inputs, targets), step)
for k, sample in enumerate(samples):
logger.image_summary('{0}-samples-{1}'.format(split, k + 1), zip(inputs, sample), step)
# snapshot
save_snapshot(os.path.join(exp_path, 'latest.pth'),
model = model, optimizer = optimizer, epoch = epoch + 1,
beta = args.beta, means = means, log_vars = log_vars)
if args.snapshot != 0 and (epoch + 1) % args.snapshot == 0:
save_snapshot(os.path.join(exp_path, 'epoch-{0}.pth'.format(epoch + 1)),
model = model, optimizer = optimizer, epoch = epoch + 1,
beta = args.beta, means = means, log_vars = log_vars)