-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMOPSO.m
337 lines (308 loc) · 14.6 KB
/
MOPSO.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
% ----------------------------------------------------------------------- %
% Function MOPSO performs a Multi-Objective Particle Swarm Optimization %
% over continous functions. %
% %
% Input parameters: %
% - params: Struct that contains the customized parameters. %
% * params.Np: Number of particles. %
% * params.Nr: Repository size (in particles). %
% * params.maxgen: Maximum number of generations. %
% * params.W: Inertia coefficient. %
% * params.C1: Personal confidence factor. %
% * params.C2: Swarm confidence factor. %
% * params.ngrid: Number of hypercubes in each dimension. %
% * params.maxvel: Maximum velocity (search space percentage)%
% * params.u_mut: Uniform mutation percentage. %
% - MultiObj: Struct that contains the parameters relative to the %
% optimization functions. %
% * MultiObj.fun: Anonymous multi-obj function to minimize. %
% * MultiObj.nVar: Number of variables. %
% * MultiObj.var_min: Vector that indicates the minimum values %
% of the search space in each dimension. %
% * MultiObj.var_max: Same than 'var_min' with the maxima. %
% ----------------------------------------------------------------------- %
% For an example of use, run 'example.m'. %
% ----------------------------------------------------------------------- %
% Author: Victor Martinez Cagigal %
% Date: 17/03/2017 %
% E-mail: vicmarcag (at) gmail (dot) com %
% Version: 1.1 %
% Log: %
% - 1.0: Initial version without mutation [1] (15/03/2017). %
% - 1.1: Crowding and mutation are implemented [2]. %
% ----------------------------------------------------------------------- %
% References: %
% [1]Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling%
% multiple objectives with particle swarm optimization. IEEE Tran- %
% sactions on evolutionary computation, 8(3), 256-279. %
% %
% [2]Sierra, M. R., & Coello, C. A. C. (2005, March). Improving PSO- %
% based multi-objective optimization using crowding, mutation and ?-%
% dominance. In International Conference on Evolutionary Multi-Crite%
% rion Optimization (pp. 505-519). Springer Berlin Heidelberg. %
% ----------------------------------------------------------------------- %
function REP = MOPSO(params,MultiObj)
% Parameters
Np = params.Np;
Nr = params.Nr;
maxgen = params.maxgen;
W = params.W;
C1 = params.C1;
C2 = params.C2;
ngrid = params.ngrid;
maxvel = params.maxvel;
u_mut = params.u_mut;
fun = MultiObj.fun;
nVar = MultiObj.nVar;
var_min = MultiObj.var_min(:);
var_max = MultiObj.var_max(:);
% Initialization
POS = repmat((var_max-var_min)',Np,1).*rand(Np,nVar) + repmat(var_min',Np,1);
VEL = zeros(Np,nVar);
POS_fit = fun(POS);
if size(POS,1) ~= size(POS_fit,1)
warning(['The objective function is badly programmed. It is not returning' ...
'a value for each particle, please check it.']);
end
PBEST = POS;
PBEST_fit= POS_fit;
DOMINATED= checkDomination(POS_fit);
REP.pos = POS(~DOMINATED,:);
REP.pos_fit = POS_fit(~DOMINATED,:);
REP = updateGrid(REP,ngrid);
maxvel = (var_max-var_min).*maxvel./100;
gen = 1;
% % Plotting and verbose
% if(size(POS_fit,2)==2)
% h_fig = figure(1);
% h_par = plot(POS_fit(:,1),POS_fit(:,2),'or'); hold on;
% h_rep = plot(REP.pos_fit(:,1),REP.pos_fit(:,2),'ok'); hold on;
% try
% set(gca,'xtick',REP.hypercube_limits(:,1)','ytick',REP.hypercube_limits(:,2)');
% axis([min(REP.hypercube_limits(:,1)) max(REP.hypercube_limits(:,1)) ...
% min(REP.hypercube_limits(:,2)) max(REP.hypercube_limits(:,2))]);
% grid on; xlabel('f1'); ylabel('f2');
% end
% drawnow;
% end
% if(size(POS_fit,2)==3)
% h_fig = figure(1);
% h_par = plot3(POS_fit(:,1),POS_fit(:,2),POS_fit(:,3),'or'); hold on;
% h_rep = plot3(REP.pos_fit(:,1),REP.pos_fit(:,2),REP.pos_fit(:,3),'ok'); hold on;
% try
% set(gca,'xtick',REP.hypercube_limits(:,1)','ytick',REP.hypercube_limits(:,2)','ztick',REP.hypercube_limits(:,3)');
% axis([min(REP.hypercube_limits(:,1)) max(REP.hypercube_limits(:,1)) ...
% min(REP.hypercube_limits(:,2)) max(REP.hypercube_limits(:,2))]);
% end
% grid on; xlabel('f1'); ylabel('f2'); zlabel('f3');
% drawnow;
% axis square;
% end
% display(['Generation #0 - Repository size: ' num2str(size(REP.pos,1))]);
% Main MPSO loop
stopCondition = false;
while ~stopCondition
% Select leader
h = selectLeader(REP);
% Update speeds and positions
VEL = W.*VEL + C1*rand(Np,nVar).*(PBEST-POS) ...
+ C2*rand(Np,nVar).*(repmat(REP.pos(h,:),Np,1)-POS);
POS = POS + VEL;
% Perform mutation
POS = mutation(POS,gen,maxgen,Np,var_max,var_min,nVar,u_mut);
% Check boundaries
[POS,VEL] = checkBoundaries(POS,VEL,maxvel,var_max,var_min);
% Evaluate the population
POS_fit = fun(POS);
% Update the repository
REP = updateRepository(REP,POS,POS_fit,ngrid);
if(size(REP.pos,1)>Nr)
REP = deleteFromRepository(REP,size(REP.pos,1)-Nr,ngrid);
end
% Update the best positions found so far for each particle
pos_best = dominates(POS_fit, PBEST_fit);
best_pos = ~dominates(PBEST_fit, POS_fit);
best_pos(rand(Np,1)>=0.5) = 0;
if(sum(pos_best)>1)
PBEST_fit(pos_best,:) = POS_fit(pos_best,:);
PBEST(pos_best,:) = POS(pos_best,:);
end
if(sum(best_pos)>1)
PBEST_fit(best_pos,:) = POS_fit(best_pos,:);
PBEST(best_pos,:) = POS(best_pos,:);
end
% Plotting and verbose
% if(size(POS_fit,2)==2)
% figure(h_fig); delete(h_par); delete(h_rep);
% h_par = plot(POS_fit(:,1),POS_fit(:,2),'or'); hold on;
% h_rep = plot(REP.pos_fit(:,1),REP.pos_fit(:,2),'ok'); hold on;
% try
% set(gca,'xtick',REP.hypercube_limits(:,1)','ytick',REP.hypercube_limits(:,2)');
% axis([min(REP.hypercube_limits(:,1)) max(REP.hypercube_limits(:,1)) ...
% min(REP.hypercube_limits(:,2)) max(REP.hypercube_limits(:,2))]);
% end
% if(isfield(MultiObj,'truePF'))
% try delete(h_pf); end
% h_pf = plot(MultiObj.truePF(:,1),MultiObj.truePF(:,2),'.','color',0.8.*ones(1,3)); hold on;
% end
% grid on; xlabel('f1'); ylabel('f2');
% drawnow;
% axis square;
% end
% if(size(POS_fit,2)==3)
% figure(h_fig); delete(h_par); delete(h_rep);
% h_par = plot3(POS_fit(:,1),POS_fit(:,2),POS_fit(:,3),'or'); hold on;
% h_rep = plot3(REP.pos_fit(:,1),REP.pos_fit(:,2),REP.pos_fit(:,3),'ok'); hold on;
% try
% set(gca,'xtick',REP.hypercube_limits(:,1)','ytick',REP.hypercube_limits(:,2)','ztick',REP.hypercube_limits(:,3)');
% axis([min(REP.hypercube_limits(:,1)) max(REP.hypercube_limits(:,1)) ...
% min(REP.hypercube_limits(:,2)) max(REP.hypercube_limits(:,2)) ...
% min(REP.hypercube_limits(:,3)) max(REP.hypercube_limits(:,3))]);
% end
% if(isfield(MultiObj,'truePF'))
% try delete(h_pf); end
% h_pf = plot3(MultiObj.truePF(:,1),MultiObj.truePF(:,2),MultiObj.truePF(:,3),'.','color',0.8.*ones(1,3)); hold on;
% end
% grid on; xlabel('f1'); ylabel('f2'); zlabel('f3');
% drawnow;
% axis square;
% end
display(['Generation #' num2str(gen) ' - Repository size: ' num2str(size(REP.pos,1))]);
% Update generation and check for termination
gen = gen + 1;
if(gen>maxgen), stopCondition = true; end
end
hold off;
end
% Function that updates the repository given a new population and its
% fitness
function REP = updateRepository(REP,POS,POS_fit,ngrid)
% Domination between particles
DOMINATED = checkDomination(POS_fit);
REP.pos = [REP.pos; POS(~DOMINATED,:)];
REP.pos_fit= [REP.pos_fit; POS_fit(~DOMINATED,:)];
% Domination between nondominated particles and the last repository
DOMINATED = checkDomination(REP.pos_fit);
REP.pos_fit= REP.pos_fit(~DOMINATED,:);
REP.pos = REP.pos(~DOMINATED,:);
% Updating the grid
REP = updateGrid(REP,ngrid);
end
% Function that corrects the positions and velocities of the particles that
% exceed the boundaries
function [POS,VEL] = checkBoundaries(POS,VEL,maxvel,var_max,var_min)
% Useful matrices
Np = size(POS,1);
MAXLIM = repmat(var_max(:)',Np,1);
MINLIM = repmat(var_min(:)',Np,1);
MAXVEL = repmat(maxvel(:)',Np,1);
MINVEL = repmat(-maxvel(:)',Np,1);
% Correct positions and velocities
VEL(VEL>MAXVEL) = MAXVEL(VEL>MAXVEL);
VEL(VEL<MINVEL) = MINVEL(VEL<MINVEL);
VEL(POS>MAXLIM) = (-1).*VEL(POS>MAXLIM);
POS(POS>MAXLIM) = MAXLIM(POS>MAXLIM);
VEL(POS<MINLIM) = (-1).*VEL(POS<MINLIM);
POS(POS<MINLIM) = MINLIM(POS<MINLIM);
end
% Function for checking the domination between the population. It
% returns a vector that indicates if each particle is dominated (1) or not
function dom_vector = checkDomination(fitness)
Np = size(fitness,1);
dom_vector = zeros(Np,1);
all_perm = nchoosek(1:Np,2); % Possible permutations
all_perm = [all_perm; [all_perm(:,2) all_perm(:,1)]];
d = dominates(fitness(all_perm(:,1),:),fitness(all_perm(:,2),:));
dominated_particles = unique(all_perm(d==1,2));
dom_vector(dominated_particles) = 1;
end
% Function that returns 1 if x dominates y and 0 otherwise
function d = dominates(x,y)
d = all(x<=y,2) & any(x<y,2);
end
% Function that updates the hypercube grid, the hypercube where belongs
% each particle and its quality based on the number of particles inside it
function REP = updateGrid(REP,ngrid)
% Computing the limits of each hypercube
ndim = size(REP.pos_fit,2);
REP.hypercube_limits = zeros(ngrid+1,ndim);
for dim = 1:1:ndim
REP.hypercube_limits(:,dim) = linspace(min(REP.pos_fit(:,dim)),max(REP.pos_fit(:,dim)),ngrid+1)';
end
% Computing where belongs each particle
npar = size(REP.pos_fit,1);
REP.grid_idx = zeros(npar,1);
REP.grid_subidx = zeros(npar,ndim);
for n = 1:1:npar
idnames = [];
for d = 1:1:ndim
REP.grid_subidx(n,d) = find(REP.pos_fit(n,d)<=REP.hypercube_limits(:,d)',1,'first')-1;
if(REP.grid_subidx(n,d)==0), REP.grid_subidx(n,d) = 1; end
idnames = [idnames ',' num2str(REP.grid_subidx(n,d))];
end
REP.grid_idx(n) = eval(['sub2ind(ngrid.*ones(1,ndim)' idnames ');']);
end
% Quality based on the number of particles in each hypercube
REP.quality = zeros(ngrid,2);
ids = unique(REP.grid_idx);
for i = 1:length(ids)
REP.quality(i,1) = ids(i); % First, the hypercube's identifier
REP.quality(i,2) = 10/sum(REP.grid_idx==ids(i)); % Next, its quality
end
end
% Function that selects the leader performing a roulette wheel selection
% based on the quality of each hypercube
function selected = selectLeader(REP)
% Roulette wheel
prob = cumsum(REP.quality(:,2)); % Cumulated probs
sel_hyp = REP.quality(find(rand(1,1)*max(prob)<=prob,1,'first'),1); % Selected hypercube
% Select the index leader as a random selection inside that hypercube
idx = 1:1:length(REP.grid_idx);
selected = idx(REP.grid_idx==sel_hyp);
selected = selected(randi(length(selected)));
end
% Function that deletes an excess of particles inside the repository using
% crowding distances
function REP = deleteFromRepository(REP,n_extra,ngrid)
% Compute the crowding distances
crowding = zeros(size(REP.pos,1),1);
for m = 1:1:size(REP.pos_fit,2)
[m_fit,idx] = sort(REP.pos_fit(:,m),'ascend');
m_up = [m_fit(2:end); Inf];
m_down = [Inf; m_fit(1:end-1)];
distance = (m_up-m_down)./(max(m_fit)-min(m_fit));
[~,idx] = sort(idx,'ascend');
crowding = crowding + distance(idx);
end
crowding(isnan(crowding)) = Inf;
% Delete the extra particles with the smallest crowding distances
[~,del_idx] = sort(crowding,'ascend');
del_idx = del_idx(1:n_extra);
REP.pos(del_idx,:) = [];
REP.pos_fit(del_idx,:) = [];
REP = updateGrid(REP,ngrid);
end
% Function that performs the mutation of the particles depending on the
% current generation
function POS = mutation(POS,gen,maxgen,Np,var_max,var_min,nVar,u_mut)
% Sub-divide the swarm in three parts [2]
fract = Np/3 - floor(Np/3);
if(fract<0.5), sub_sizes =[ceil(Np/3) round(Np/3) round(Np/3)];
else sub_sizes =[round(Np/3) round(Np/3) floor(Np/3)];
end
cum_sizes = cumsum(sub_sizes);
% First part: no mutation
% Second part: uniform mutation
nmut = round(u_mut*sub_sizes(2));
if(nmut>0)
idx = cum_sizes(1) + randperm(sub_sizes(2),nmut);
POS(idx,:) = repmat((var_max-var_min)',nmut,1).*rand(nmut,nVar) + repmat(var_min',nmut,1);
end
% Third part: non-uniform mutation
per_mut = (1-gen/maxgen)^(5*nVar); % Percentage of mutation
nmut = round(per_mut*sub_sizes(3));
if(nmut>0)
idx = cum_sizes(2) + randperm(sub_sizes(3),nmut);
POS(idx,:) = repmat((var_max-var_min)',nmut,1).*rand(nmut,nVar) + repmat(var_min',nmut,1);
end
end