-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathoptimizer.py
390 lines (340 loc) · 15 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
"""
Pytorch Optimizer and Scheduler Related Task
"""
import math
import logging
import torch
from torch import optim
from config import cfg
def get_optimizer(args, net):
"""
Decide Optimizer (Adam or SGD)
"""
if args.backbone_lr > 0.0:
base_params = []
resnet_params = []
resnet_name = []
resnet_name.append('layer0')
resnet_name.append('layer1')
#resnet_name.append('layer2')
#resnet_name.append('layer3')
#resnet_name.append('layer4')
len_resnet = len(resnet_name)
else:
param_groups = net.parameters()
if args.backbone_lr > 0.0:
for name, param in net.named_parameters():
is_resnet = False
for i in range(len_resnet):
if resnet_name[i] in name:
resnet_params.append(param)
# param.requires_grad=False
print("resnet_name", name)
is_resnet = True
break
if not is_resnet:
base_params.append(param)
if args.sgd:
if args.backbone_lr > 0.0:
optimizer = optim.SGD([
{'params': base_params},
{'params': resnet_params, 'lr':args.backbone_lr}
],
lr=args.lr,
weight_decay=5e-4, #args.weight_decay,
momentum=args.momentum,
nesterov=False)
else:
optimizer = optim.SGD(param_groups,
lr=args.lr,
weight_decay=5e-4, #args.weight_decay,
momentum=args.momentum,
nesterov=False)
else:
raise ValueError('Not a valid optimizer')
if args.lr_schedule == 'scl-poly':
if cfg.REDUCE_BORDER_ITER == -1:
raise ValueError('ERROR Cannot Do Scale Poly')
rescale_thresh = cfg.REDUCE_BORDER_ITER
scale_value = args.rescale
lambda1 = lambda iteration: \
math.pow(1 - iteration / args.max_iter,
args.poly_exp) if iteration < rescale_thresh else scale_value * math.pow(
1 - (iteration - rescale_thresh) / (args.max_iter - rescale_thresh),
args.repoly)
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)
elif args.lr_schedule == 'poly':
lambda1 = lambda iteration: math.pow(1 - iteration / args.max_iter, args.poly_exp)
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)
else:
raise ValueError('unknown lr schedule {}'.format(args.lr_schedule))
return optimizer, scheduler
def get_optimizer_attention(args, net):
"""
Decide Optimizer (Adam or SGD)
"""
attention_params = []
base_params = []
hanet_name = []
if args.backbone_lr > 0.0:
resnet_params = []
resnet_name = []
resnet_name.append('layer0')
resnet_name.append('layer1')
#resnet_name.append('layer2')
#resnet_name.append('layer3')
#resnet_name.append('layer4')
len_resnet = len(resnet_name)
for i in range(5):
if args.hanet[i] > 0: # HANet_Diff
hanet_name.append('hanet' + str(i))
len_hanet = len(hanet_name)
for name, param in net.named_parameters():
is_hanet = False
is_resnet = False
if args.backbone_lr > 0.0:
for i in range(len_resnet):
if resnet_name[i] in name:
resnet_params.append(param)
# param.requires_grad=False
print("resnet_name", name)
is_resnet = True
break
if not is_resnet:
for i in range(len_hanet):
if hanet_name[i] in name:
attention_params.append(param)
#print("hanet_name", name)
is_hanet = True
break
if not is_hanet and not is_resnet:
base_params.append(param)
#print("base", name)
if args.sgd:
if args.backbone_lr > 0.0:
optimizer = optim.SGD([
{'params': base_params},
{'params': resnet_params, 'lr':args.backbone_lr}
],
lr=args.lr,
weight_decay=5e-4, #args.weight_decay,
momentum=args.momentum,
nesterov=False)
else:
optimizer = optim.SGD(base_params,
lr=args.lr,
weight_decay=5e-4, #args.weight_decay,
momentum=args.momentum,
nesterov=False)
else:
raise ValueError('Not a valid optimizer')
print(" ############# HANet Number", len_hanet)
optimizer_at = optim.SGD(attention_params,
lr=args.hanet_lr,
weight_decay=args.hanet_wd,
momentum=args.momentum,
nesterov=False)
if args.lr_schedule == 'scl-poly':
if cfg.REDUCE_BORDER_ITER == -1:
raise ValueError('ERROR Cannot Do Scale Poly')
rescale_thresh = cfg.REDUCE_BORDER_ITER
scale_value = args.rescale
lambda1 = lambda iteration: \
math.pow(1 - iteration / args.max_iter,
args.poly_exp) if iteration <= rescale_thresh else scale_value * math.pow(
1 - (iteration - rescale_thresh) / (args.max_iter - rescale_thresh),
args.repoly)
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)
if args.hanet_poly_exp > 0.0:
lambda2 = lambda iteration: \
math.pow(1 - iteration / args.max_iter,
args.hanet_poly_exp) if iteration <= rescale_thresh else scale_value * math.pow(
1 - (iteration - rescale_thresh) / (args.max_iter - rescale_thresh),
args.repoly)
scheduler_at = optim.lr_scheduler.LambdaLR(optimizer_at, lr_lambda=lambda2)
else:
lambda2 = lambda iteration: \
math.pow(1 - iteration / args.max_iter,
args.poly_exp) if iteration <= rescale_thresh else scale_value * math.pow(
1 - (iteration - rescale_thresh) / (args.max_iter - rescale_thresh),
args.repoly)
scheduler_at = optim.lr_scheduler.LambdaLR(optimizer_at, lr_lambda=lambda2)
elif args.lr_schedule == 'poly':
lambda1 = lambda iteration: math.pow(1 - iteration / args.max_iter, args.poly_exp)
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)
# for attention module
if args.hanet_poly_exp > 0.0:
lambda2 = lambda iteration: math.pow(1 - iteration / args.max_iter, args.hanet_poly_exp)
scheduler_at = optim.lr_scheduler.LambdaLR(optimizer_at, lr_lambda=lambda2)
else:
lambda2 = lambda iteration: math.pow(1 - iteration / args.max_iter, args.poly_exp)
scheduler_at = optim.lr_scheduler.LambdaLR(optimizer_at, lr_lambda=lambda2)
else:
raise ValueError('unknown lr schedule {}'.format(args.lr_schedule))
return optimizer, scheduler, optimizer_at, scheduler_at
def get_optimizer_by_epoch(args, net):
"""
Decide Optimizer (Adam or SGD)
"""
param_groups = net.parameters()
if args.sgd:
optimizer = optim.SGD(param_groups,
lr=args.lr,
weight_decay=args.weight_decay,
momentum=args.momentum,
nesterov=False)
elif args.adam:
amsgrad = False
if args.amsgrad:
amsgrad = True
optimizer = optim.Adam(param_groups,
lr=args.lr,
weight_decay=args.weight_decay,
amsgrad=amsgrad
)
else:
raise ValueError('Not a valid optimizer')
if args.lr_schedule == 'scl-poly':
if cfg.REDUCE_BORDER_EPOCH == -1:
raise ValueError('ERROR Cannot Do Scale Poly')
rescale_thresh = cfg.REDUCE_BORDER_EPOCH
scale_value = args.rescale
lambda1 = lambda epoch: \
math.pow(1 - epoch / args.max_epoch,
args.poly_exp) if epoch < rescale_thresh else scale_value * math.pow(
1 - (epoch - rescale_thresh) / (args.max_epoch - rescale_thresh),
args.repoly)
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)
elif args.lr_schedule == 'poly':
lambda1 = lambda epoch: math.pow(1 - epoch / args.max_epoch, args.poly_exp)
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)
else:
raise ValueError('unknown lr schedule {}'.format(args.lr_schedule))
return optimizer, scheduler
def load_weights_hanet(net, optimizer, optimizer_at, scheduler, scheduler_at, snapshot_file, restore_optimizer_bool=False):
"""
Load weights from snapshot file
"""
logging.info("Loading weights from model %s", snapshot_file)
net, optimizer, optimizer_at, scheduler, scheduler_at, epoch, mean_iu = restore_snapshot_hanet(net, optimizer,
optimizer_at, scheduler, scheduler_at, snapshot_file, restore_optimizer_bool)
return epoch, mean_iu
def load_weights_pe(net, snapshot_file):
"""
Load weights from snapshot file
"""
logging.info("Loading weights from model %s", snapshot_file)
net = restore_snapshot_pe(net, snapshot_file)
def load_weights(net, optimizer, scheduler, snapshot_file, restore_optimizer_bool=False):
"""
Load weights from snapshot file
"""
logging.info("Loading weights from model %s", snapshot_file)
net, optimizer, scheduler, epoch, mean_iu = restore_snapshot(net, optimizer, scheduler, snapshot_file,
restore_optimizer_bool)
return epoch, mean_iu
def restore_snapshot_pe(net, snapshot):
"""
Restore weights and optimizer (if needed ) for resuming job.
"""
checkpoint = torch.load(snapshot, map_location=torch.device('cpu'))
logging.info("Checkpoint PE Load Compelete")
if 'state_dict' in checkpoint:
net = forgiving_state_restore_only_pe(net, checkpoint['state_dict'])
else:
net = forgiving_state_restore_only_pe(net, checkpoint)
return net
def forgiving_state_restore_only_pe(net, loaded_dict):
"""
Handle partial loading when some tensors don't match up in size.
Because we want to use models that were trained off a different
number of classes.
"""
net_state_dict = net.state_dict()
new_loaded_dict = {}
for k in net_state_dict:
if k in loaded_dict and net_state_dict[k].size() == loaded_dict[k].size():
if 'pos_emb1d' in k:
print("matched loading parameter", k)
new_loaded_dict[k] = loaded_dict[k]
# else:
# print("Skipped loading parameter", k)
# logging.info("Skipped loading parameter %s", k)
net_state_dict.update(new_loaded_dict)
net.load_state_dict(net_state_dict)
return net
def freeze_pe(net):
for name, param in net.named_parameters():
if 'pos_emb1d' in name:
print("freeze parameter", name)
param.requires_grad = False
def restore_snapshot_hanet(net, optimizer, optimizer_at, scheduler, scheduler_at, snapshot, restore_optimizer_bool):
"""
Restore weights and optimizer (if needed ) for resuming job.
"""
checkpoint = torch.load(snapshot, map_location=torch.device('cpu'))
logging.info("Checkpoint Load Compelete")
if optimizer is not None and 'optimizer' in checkpoint and restore_optimizer_bool:
optimizer.load_state_dict(checkpoint['optimizer'])
if optimizer_at is not None and 'optimizer_at' in checkpoint and restore_optimizer_bool:
optimizer_at.load_state_dict(checkpoint['optimizer_at'])
if scheduler is not None and 'scheduler' in checkpoint and restore_optimizer_bool:
scheduler.load_state_dict(checkpoint['scheduler'])
if scheduler_at is not None and 'scheduler_at' in checkpoint and restore_optimizer_bool:
scheduler_at.load_state_dict(checkpoint['scheduler_at'])
if 'state_dict' in checkpoint:
net = forgiving_state_restore(net, checkpoint['state_dict'])
else:
net = forgiving_state_restore(net, checkpoint)
return net, optimizer, optimizer_at, scheduler, scheduler_at, checkpoint['epoch'], checkpoint['mean_iu']
def restore_snapshot(net, optimizer, scheduler, snapshot, restore_optimizer_bool):
"""
Restore weights and optimizer (if needed ) for resuming job.
"""
checkpoint = torch.load(snapshot, map_location=torch.device('cpu'))
logging.info("Checkpoint Load Compelete")
if optimizer is not None and 'optimizer' in checkpoint and restore_optimizer_bool:
optimizer.load_state_dict(checkpoint['optimizer'])
if scheduler is not None and 'scheduler' in checkpoint and restore_optimizer_bool:
scheduler.load_state_dict(checkpoint['scheduler'])
if 'state_dict' in checkpoint:
net = forgiving_state_restore(net, checkpoint['state_dict'])
else:
net = forgiving_state_restore(net, checkpoint)
return net, optimizer, scheduler, checkpoint['epoch'], checkpoint['mean_iu']
def forgiving_state_restore(net, loaded_dict):
"""
Handle partial loading when some tensors don't match up in size.
Because we want to use models that were trained off a different
number of classes.
"""
net_state_dict = net.state_dict()
new_loaded_dict = {}
for k in net_state_dict:
if k in loaded_dict and net_state_dict[k].size() == loaded_dict[k].size():
new_loaded_dict[k] = loaded_dict[k]
else:
print("Skipped loading parameter", k)
# logging.info("Skipped loading parameter %s", k)
net_state_dict.update(new_loaded_dict)
net.load_state_dict(net_state_dict)
return net
def forgiving_state_copy(target_net, source_net):
"""
Handle partial loading when some tensors don't match up in size.
Because we want to use models that were trained off a different
number of classes.
"""
net_state_dict = target_net.state_dict()
loaded_dict = source_net.state_dict()
new_loaded_dict = {}
for k in net_state_dict:
if k in loaded_dict and net_state_dict[k].size() == loaded_dict[k].size():
new_loaded_dict[k] = loaded_dict[k]
print("Matched", k)
else:
print("Skipped loading parameter ", k)
# logging.info("Skipped loading parameter %s", k)
net_state_dict.update(new_loaded_dict)
target_net.load_state_dict(net_state_dict)
return target_net