Skip to content

Commit

Permalink
Revert "[ROCm] Use tl.range() in block GEMM kernels with `num_stage… (
Browse files Browse the repository at this point in the history
  • Loading branch information
zhyncs authored Feb 17, 2025
1 parent c9565e4 commit 5f1a485
Showing 1 changed file with 6 additions and 101 deletions.
107 changes: 6 additions & 101 deletions python/sglang/srt/layers/quantization/fp8_kernel.py
Original file line number Diff line number Diff line change
Expand Up @@ -272,7 +272,6 @@ def _w8a8_block_fp8_matmul(
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
num_stages: tl.constexpr,
):
"""Triton-accelerated function used to perform linear operations (dot
product) on input tensors `A` and `B` with block-wise quantization, and store the result in output
Expand Down Expand Up @@ -358,7 +357,6 @@ def _w8a8_block_fp8_matmul_unrolledx4(
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
num_stages: tl.constexpr,
):
"""Triton-accelerated function used to perform linear operations (dot
product) on input tensors `A` and `B` with block-wise quantization, and store the result in output
Expand Down Expand Up @@ -388,9 +386,7 @@ def _w8a8_block_fp8_matmul_unrolledx4(
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
# manually unroll to 4 iterations
UNROLL_FACTOR = 4
for k in tl.range(
0, tl.cdiv(K, BLOCK_SIZE_K * UNROLL_FACTOR), num_stages=num_stages
):
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K * UNROLL_FACTOR)):
# 1st iteration
a = tl.load(
a_ptrs,
Expand Down Expand Up @@ -489,92 +485,6 @@ def _w8a8_block_fp8_matmul_unrolledx4(
tl.store(c_ptrs, c, mask=c_mask)


@triton.jit
def _w8a8_block_fp8_matmul_hip(
# Pointers to inputs and output
A,
B,
C,
As,
Bs,
# Shape for matmul
M,
N,
K,
# Block size for block-wise quantization
group_n,
group_k,
# Stride for inputs and output
stride_am,
stride_ak,
stride_bk,
stride_bn,
stride_cm,
stride_cn,
stride_As_m,
stride_As_k,
stride_Bs_k,
stride_Bs_n,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
num_stages: tl.constexpr,
):
"""Triton-accelerated function used to perform linear operations (dot
product) on input tensors `A` and `B` with block-wise quantization, and store the result in output
tensor `C`.
"""

pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m

offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = A + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptrs = B + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)

As_ptrs = As + offs_am * stride_As_m
offs_bsn = offs_bn // group_n
Bs_ptrs = Bs + offs_bsn * stride_Bs_n

accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in tl.range(0, tl.cdiv(K, BLOCK_SIZE_K), num_stages=num_stages):
a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0)
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)

k_start = k * BLOCK_SIZE_K
offs_ks = k_start // group_k
a_s = tl.load(As_ptrs + offs_ks * stride_As_k)
b_s = tl.load(Bs_ptrs + offs_ks * stride_Bs_k)

accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :]
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk

if C.dtype.element_ty == tl.bfloat16:
c = accumulator.to(tl.bfloat16)
elif C.dtype.element_ty == tl.float16:
c = accumulator.to(tl.float16)
else:
c = accumulator.to(tl.float32)

offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = C + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)


@functools.lru_cache
def get_w8a8_block_fp8_configs(
N: int, K: int, block_n: int, block_k: int
Expand Down Expand Up @@ -685,16 +595,11 @@ def grid(META):
num_workgroups = triton.cdiv(M, config["BLOCK_SIZE_M"]) * triton.cdiv(
N, config["BLOCK_SIZE_N"]
)

kernel = _w8a8_block_fp8_matmul

# On AMD GPU, use kernels where software pipelining with num_stages is
# explicitly specified in the hot loop.
if is_hip_ == True:
if num_workgroups <= get_device_core_count():
kernel = _w8a8_block_fp8_matmul_unrolledx4
else:
kernel = _w8a8_block_fp8_matmul_hip
kernel = (
_w8a8_block_fp8_matmul_unrolledx4
if (is_hip_ == True and num_workgroups <= get_device_core_count())
else _w8a8_block_fp8_matmul
)

kernel[grid](
A,
Expand Down

0 comments on commit 5f1a485

Please sign in to comment.