-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2_train_simclr.py
208 lines (151 loc) · 7.21 KB
/
2_train_simclr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import argparse
import torch
from utils.monitoring import make_directories, compute_parameter_grad, get_logger, \
plot_gif, visualize, plot_img, str2bool, visual_evaluation
from utils.data_loader import load_dataset_exemplar
from torch import optim
import torch.nn as nn
import numpy as np
import random
import os
from model.simclr import ImageEmbedding, ContrastiveLoss
from torch.optim import RMSprop
from utils.custom_loader import Contrastive_augmentation
import torchvision.transforms as tf
from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import ReduceLROnPlateau
from utils.custom_transform import Binarize_batch, Scale_0_1_batch
parser = argparse.ArgumentParser()
parser.add_argument('--z_size', type=int, default=256)
parser.add_argument('--dataset', type=str, default='omniglot', choices=['omniglot'],
metavar='DATASET', help='Dataset choice.')
parser.add_argument('--download_data', type=eval, default=False, choices=[True, False])
parser.add_argument('--dataset_root', type=str, default="/media/data_cifs_lrs/projects/prj_control/data")
parser.add_argument('--input_type', type=str, default='binary',
choices=['binary'], help='type of the input')
parser.add_argument('--batch_size', type=int, default=128, metavar='BATCH_SIZE',
help='input batch size for training')
parser.add_argument('--learning_rate', type=float, default=1e-3, metavar='LR',
help='learning rate of the optimizer')
parser.add_argument('--seed', type=int, default=None, metavar='SEED', help='random seed (None is no seed)')
parser.add_argument('--epoch', type=int, default=100, metavar='EPOCH', help='number of epoch')
parser.add_argument("--input_shape", nargs='+', type=int, default=[1, 50, 50],
help='shape of the input [channel, height, width]')
parser.add_argument('-od', '--out_dir', type=str, default='/media/data_cifs/projects/prj_zero_gene/exp/',
metavar='OUT_DIR', help='output directory for model snapshots etc.')
parser.add_argument('--debug', default=False, action='store_true', help='debugging flag (do not save the network)')
parser.add_argument('--device', type=str, default='cuda:0', help='cuda device')
parser.add_argument('--strength', type=str, default='normal', choices=['normal','light','strong'], help='strength of the augmentation')
parser.add_argument('--tag', type=str, default='', help='tag of the experiment')
parser.add_argument('--model_name', type=str, default='simclr', choices=['simclr'],
help="type of the model")
parser.add_argument('--auto_param', default=False, action='store_true', help='set all the param automatically')
parser.add_argument('--preload', default=False, action='store_true', help='preload the dataset')
parser.add_argument("--augment", type=str2bool, nargs='?', const=True, default=False, help="data augmentation")
parser.add_argument("--rate_scheduler", type=str2bool, nargs='?', const=True, default=False, help="include a rate scheduler")
parser.add_argument("--exemplar_type", default='prototype', choices=['prototype', 'first', 'shuffle'],
metavar='EX_TYPE', help='type of exemplar')
args = parser.parse_args()
args.input_shape = tuple(args.input_shape)
if args.device == 'meso':
args.device = torch.cuda.current_device()
batch_size_loss = args.batch_size
default_args = parser.parse_args([])
if args.auto_param:
args = retrieve_param(args, default_args)
if args.seed is not None:
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
visual_steps, monitor_steps = 10, 50
args = make_directories(args)
kwargs = {'preload': args.preload}
train_loader, test_loader, args = \
load_dataset_exemplar(args, shape = args.input_shape, shuffle=True, drop_last=True)
model_embedding = ImageEmbedding(args.z_size).to(args.device)
SimCLR_loss = ContrastiveLoss(batch_size_loss).to(args.device)
optimizer = RMSprop(model_embedding.parameters(), lr=args.learning_rate)
scheduler = ReduceLROnPlateau(optimizer, 'min', patience=10, factor=0.5)
if not args.debug:
logger = get_logger(args, __file__)
writer = SummaryWriter(args.snap_dir)
else:
logger = None
writer = None
augment = Contrastive_augmentation(train_loader.dataset, target_size=args.input_shape[1:], strength=args.strength)
print(model_embedding)
print('number of parameters : {0:,}'.format(sum(p.numel() for p in model_embedding.parameters())))
best_loss = np.inf
for epoch in range(args.epoch):
train_loss = 0
len_dataset = 0
model_embedding.train()
for batch_idx, (data, exemplar, label) in enumerate(train_loader):
exemplar = exemplar.to(args.device)
data = data.to(args.device)
X, Y = augment(data)
X, Y = X.to(args.device), Y.to(args.device)
embX, projX = model_embedding(X)
embY, projY = model_embedding(Y)
loss = SimCLR_loss(projX, projY)
optimizer.zero_grad()
loss.backward()
optimizer.step()
len_dataset += X.size(0)
train_loss += loss.item()
if batch_idx % monitor_steps == 0:
to_print = 'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.3f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.item()
)
if args.debug:
print(to_print)
else:
logger.info(to_print)
train_loss /= len(train_loader)
to_print = '====> Epoch: {} Avg loss: {:.4f}'.format(
epoch, train_loss)
if args.debug:
print(to_print)
else:
logger.info(to_print)
if writer is not None:
writer.add_scalar("Loss/train", train_loss, epoch)
model_embedding.eval()
eval_loss = 0
for batch_idx, (data, exemplar, label) in enumerate(test_loader):
exemplar = exemplar.to(args.device)
data = data.to(args.device)
X, Y = augment(data)
#if args.generative_model is not None :
# data = data.to(args.device)
# exemplar = exemplar.to(args.device)
# samples, _, _ = gen_model.generate(exemplar.size(0), exemplar=exemplar, low_memory=True)
# X, Y = augment(samples)
#else:
# X, Y = augment(data)
X, Y = X.to(args.device), Y.to(args.device)
embX, projX = model_embedding(X)
embY, projY = model_embedding(Y)
loss = SimCLR_loss(projX, projY)
len_dataset += X.size(0)
eval_loss += loss.item()
eval_loss /= len(test_loader)
if args.rate_scheduler:
scheduler.step(eval_loss)
to_print = '====> TEST Epoch: {} Avg loss: {:.4f}'.format(
epoch, eval_loss)
if not args.debug:
torch.save(model_embedding.state_dict(), args.snap_dir + '_end.model')
if args.debug:
print(to_print)
else:
logger.info(to_print)
if writer is not None:
writer.add_scalar("Loss/eval", eval_loss, epoch)
writer.add_scalar("rate", optimizer.param_groups[0]['lr'], epoch)
if eval_loss < best_loss:
if not args.debug:
torch.save(model_embedding.state_dict(), args.snap_dir + '_best.model')
best_loss = eval_loss