-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1_train_vaestn.py
346 lines (276 loc) · 14.3 KB
/
1_train_vaestn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:2"
import argparse
import torch
from utils.monitoring import make_directories, compute_parameter_grad, get_logger, \
plot_gif, visualize, plot_img, str2bool, visual_evaluation
#from utils.loading_tools import normalise_args
from utils.data_loader import load_dataset_exemplar
from model.network import VaeStn
#from model.network import SeqVaeCondGeneral2b, ConvVaeStn, vae_stn_big2b, SeqVaeCondGeneral2b2,SeqVaeCondGeneral2b3, SeqVaeCondGeneral2b4, SeqVaeCondGeneral2b5
#from model.network import SeqVaeArmageddon, vae_stn_big2bA, SeqVaeCondGeneral2b6, SeqVaeCondGeneral2bb, SeqVaeCondGeneral2bc, SeqVaeCondGeneral2bd, SeqVaeCondGeneral2b_VarSize
from model.losses import loss_vae_bernouilli
from torch import optim
import torch.nn as nn
#from model.param import retrieve_param
import numpy as np
import random
from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import ReduceLROnPlateau
from operator import add
import wandb
import sys
# torch.backends.cudnn.enabled = False
# --dataset mnist --batch_size 28 --z_size 5 --seed 75 --device cuda:1 --debug --lstm_size 400 --epoch 5
# python 1_train_vaestn.py --dataset omniglot_weak --auto_param --device cuda:2 --model_name vae_stn --exemplar --time_step 80 --tag CondGeneral2c_LstmSize400_TimeStep80_batch_size28_GlobalInit
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='omniglot', choices=['omniglot', 'omniglot_weak', 'mnist', 'human_drawing',
'human_drawing_and_omniglot', 'quick_draw',
'human_drawing_and_quick_draw'],
metavar='DATASET', help='Dataset choice.')
parser.add_argument('--download_data', type=eval, default=False, choices=[True, False])
parser.add_argument('--dataset_root', type=str, default="/media/data_cifs_lrs/projects/prj_control/data")
parser.add_argument('--input_type', type=str, default='binary',
choices=['binary'], help='type of the input')
parser.add_argument('--batch_size', type=int, default=128, metavar='BATCH_SIZE',
help='input batch size for training')
parser.add_argument('--learning_rate', type=float, default=1e-3, metavar='LR',
help='learning rate of the optimizer')
parser.add_argument('--seed', type=int, default=None, metavar='SEED', help='random seed (None is no seed)')
parser.add_argument('--epoch', type=int, default=500, metavar='EPOCH', help='number of epoch')
# parser.add_argument("--add_noise", type=eval, default=False, choices=[True, False])
parser.add_argument("--input_shape", nargs='+', type=int, default=[1, 50, 50],
help='shape of the input [channel, height, width]')
parser.add_argument('-od', '--out_dir', type=str, default='/media/data_cifs/projects/prj_zero_gene/exp/',
metavar='OUT_DIR', help='output directory for model snapshots etc.')
parser.add_argument('--debug', default=False, action='store_true', help='debugging flag (do not save the network)')
parser.add_argument('--beta_adam', type=float, default=0.9, help='value of the first order beta in adam optimizer')
parser.add_argument('--clip_value', type=float, default=5, help='value of the gradient clipping')
parser.add_argument('--z_size', type=int, default=60)
parser.add_argument('--lstm_size', type=int, default=400, help='size of the hidden state of the LSTM')
parser.add_argument('--time_step', type=int, default=40, help='number of time step of the LSTM')
parser.add_argument('--device', type=str, default='cuda:0', help='cuda device')
parser.add_argument('--tag', type=str, default='', help='tag of the experiment')
parser.add_argument("--exemplar", type=str2bool, nargs='?', const=True, default=True, help="For conditional VAE")
parser.add_argument('--conv_gru', default=False, action='store_true', help='for a convgru in the canvas')
parser.add_argument('--model_name', type=str, default='vae_stn', choices=['vae_stn'],
help="type of the model ['vae_stn', 'vae_draw']")
parser.add_argument('--read_size', nargs='+', type=int, default=[1, 15, 15],
help='Size of the read operation visual field.')
parser.add_argument('--write_size', nargs='+', type=int, default=[1, 15, 15],
help='Size of the write operation visual field.')
parser.add_argument('--auto_param', default=False, action='store_true', help='set all the param automatically')
#parser.add_argument('--hd_classes', nargs='+', type=int, default=[0,1,2,3,4,5,6])
#parser.add_argument('--loading_type', type=str, default='all_classes', choices=['all_classes'], help="type of the model")
parser.add_argument("--augment", type=str2bool, nargs='?', const=True, default=False, help="data augmentation")
parser.add_argument("--use_wandb", default=False, action='store_true', help='use weight and bias for monitoring')
parser.add_argument("--attention_type", type=str, default='stn', choices=['stn', 'gaussian', 'no_attention'])
parser.add_argument('--preload', default=True, action='store_true', help='preload the dataset')
parser.add_argument('--annealing_time', type=int, default=None)
#parser.add_argument("--shuffle_exemplar", type=str2bool, nargs='?', const=True, default=False, help="shuffle the exemplar")
parser.add_argument("--rate_scheduler", type=str2bool, nargs='?', const=True, default=True, help="include a rate scheduler")
parser.add_argument('--beta', type=float, default=1.0, metavar='BETA', help='beta that weight the KL in the vae Loss')
parser.add_argument("--exemplar_type", default='prototype', choices=['prototype', 'first', 'shuffle'],
metavar='EX_TYPE', help='type of exemplar')
parser.add_argument("--attention_ratio", type=float, default=1.0, help='zoom of the attention')
#args = normalize_args(args)
args = parser.parse_args()
if args.seed is not None:
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
torch.backends.cudnn.benchmark = False
if args.device == 'meso':
args.device = torch.cuda.current_device()
args.read_size = tuple(args.read_size)
args.write_size = tuple(args.write_size)
args.input_shape = tuple(args.input_shape)
default_args = parser.parse_args([])
if args.auto_param:
args = retrieve_param(args, default_args)
if args.debug:
visual_steps, monitor_steps = 1, 25 # 50
else:
visual_steps, monitor_steps = 10, 50
beta_list = torch.ones(args.epoch)*args.beta
if args.annealing_time is not None:
beta_list[:args.annealing_time] = torch.linspace(0.2, args.beta, args.annealing_time)
args = make_directories(args, model_class='vae_stn')
kwargs = {'preload': args.preload}
#train_loader, test_loader, train_exemplars, test_exemplars, args = load_dataset_exemplar(args, shape=args.input_shape, **kwargs)
train_loader, test_loader, args = load_dataset_exemplar(args, shape=args.input_shape, **kwargs)
vae = VaeStn(args).to(args.device)
optimizer = optim.Adam(vae.parameters(), lr=args.learning_rate, betas=(args.beta_adam, 0.999))
if args.rate_scheduler:
scheduler = ReduceLROnPlateau(optimizer, 'min', patience=10, factor=0.5)
if not args.debug:
logger = get_logger(args, __file__)
if args.use_wandb:
wandb.init(project="zero_shot_gene", entity="victorboutin", config=hyperparameter)
writer = 'wandb'
else:
writer = SummaryWriter(args.snap_dir)
else:
logger = None
writer = None
my_args = ''
for idx in range(len(sys.argv)):
my_args += sys.argv[idx] + ' '
if args.debug:
print(my_args)
print(vae)
print('number of parameters : {0:,}'.format(sum(p.numel() for p in vae.parameters())))
else:
logger.info(vae)
logger.info('number of parameters : {0:,}'.format(sum(p.numel() for p in vae.parameters())))
logger.info(my_args)
vis_dict = {"data": None, "reco": None, "reco_seq": None, "bu_att_seq": None,
"gene_in": None, "gene_seq_in": None, "exemplar_in": None,
"gene_ood": None, "gene_seq_ood": None, "exemplar_ood": None, "data_test": None}
#to_plot = ['reco', 'reco_seq', 'gene_in', 'gene_seq_in']
to_plot = ['reco', 'gene_in']
if args.exemplar:
to_plot += ['gene_ood']
best_loss = np.inf
for epoch in range(args.epoch):
vae.train()
train_loss, kl_loss, mse_loss, all_grad = 0, 0, 0, 0
# all_t = 0
len_dataset = 0
batch_exemplar = None
vis_dict["reco"] = None
vis_dict["data"] = None
beta = beta_list[epoch]
for batch_idx, (data, exemplar, label) in enumerate(train_loader):
data = data.to(args.device)
if args.exemplar:
exemplar = exemplar.to(args.device)
else :
exemplar = None
len_dataset += 1
mus, log_vars, x_hat, _, _, _, _ = vae(data, exemplar=exemplar, low_memory=True)
loss, mse, kld = loss_vae_bernouilli(x_hat, data, args, mus=mus, log_vars=log_vars, beta=beta)
#
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(vae.parameters(), max_norm=args.clip_value, norm_type=2)
grad_norm = compute_parameter_grad(vae)
if batch_idx == len(train_loader) - 2:
vis_dict["data"] = data.detach()
vis_dict["reco"] = x_hat.detach()
if args.exemplar:
vis_dict["exemplar_in"] = exemplar.detach()
# accumulate for epoch monitoring
train_loss += loss.item()
mse_loss += mse.item()
kl_loss += kld.item()
all_grad += grad_norm
optimizer.step()
if batch_idx % monitor_steps == 0:
to_print = 'Train Epoch: {} [{}/{} ({:.0f}%)]\tMSE: {:.3f}\tKL: {:.3f}\tgrad: {:.3f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
mse.item(),
kld.item(),
grad_norm)
if args.debug:
print(to_print)
else:
logger.info(to_print)
train_loss /= len(train_loader)
mse_loss /= len(train_loader)
kl_loss /= len(train_loader)
all_grad /= len(train_loader)
to_print = '====> Epoch: {} Avg loss: {:.4f} -- Avg mse: {:.4f} -- Avg kl: {:.4f} -- Avg grad: {:.4f} '.format(
epoch, train_loss,
mse_loss,
kl_loss,
all_grad)
if args.debug:
print(to_print)
else:
logger.info(to_print)
if writer is not None:
if writer == 'wandb':
wandb.log({"Loss/train": train_loss,
"MSE/train": mse_loss,
"KL/train": kl_loss,
"Gradient/train": all_grad}, step=epoch)
wandb.watch(vae)
else:
writer.add_scalar("Loss/train", train_loss, epoch)
writer.add_scalar("MSE/train", mse_loss, epoch)
writer.add_scalar("KL/train", kl_loss, epoch)
writer.add_scalar("Gradient/train", all_grad, epoch)
##evaluation
with torch.no_grad():
vae.eval()
eval_loss, eval_kl, eval_mse = 0, 0, 0
len_dataset = 0
for batch_idx, (data, exemplar_ood, label) in enumerate(test_loader):
data = data.to(args.device)
if args.exemplar:
exemplar_ood = exemplar_ood.to(args.device)
else:
exemplar_ood = None
len_dataset += data.size(0)
mus, log_vars, x_hat, _, _, _, _ = vae(data, exemplar=exemplar_ood, low_memory=True)
loss, mse, kld = loss_vae_bernouilli(x_hat, data, args, mus=mus, log_vars=log_vars)
#if batch_idx == len(test_loader) - 1:
if batch_idx == len(test_loader) - 2:
vis_dict["data_test"] = data.detach()
vis_dict["reco_test"] = x_hat.detach()
if args.exemplar:
vis_dict["exemplar_ood"] = exemplar_ood.detach()
eval_loss += loss.item()
eval_mse += mse.item()
eval_kl += kld.item()
eval_loss /= len(test_loader)
eval_mse /= len(test_loader)
eval_kl /= len(test_loader)
if args.rate_scheduler:
if args.annealing_time is not None:
if epoch > args.annealing_time:
scheduler.step(eval_loss)
else:
scheduler.step(eval_loss)
to_print = '====> TEST Epoch: {} Avg loss: {:.4f} -- Avg mse: {:.4f} -- Avg kl: {:.4f}'.format(
epoch, eval_loss,
eval_mse,
eval_kl)
if args.debug:
print(to_print)
else:
logger.info(to_print)
if writer is not None:
if writer == 'wandb':
wandb.log({"Loss/eval": eval_loss,
"MSE/eval": eval_mse,
"KL/eval": eval_kl,
"rate": optimizer.param_groups[0]['lr']}, step=epoch)
else:
writer.add_scalar("Loss/eval", eval_loss, epoch)
writer.add_scalar("MSE/eval", eval_mse, epoch)
writer.add_scalar("KL/eval", eval_kl, epoch)
writer.add_scalar("rate", optimizer.param_groups[0]['lr'], epoch)
writer.add_scalar("beta", beta, epoch)
#writer.add_hparams(hyperparams, {'hparam/eval_loss': eval_loss, 'hparam/train_loss': train_loss}, run_name=args.model_signature)
if (epoch % visual_steps == 0) or (epoch == args.epoch - 1):
visual_evaluation(vae, args, exemplar, exemplar_ood, vis_dict, epoch=epoch, best=False, to_plot=to_plot, writer=writer)
if eval_loss < best_loss:
visual_evaluation(vae, args, exemplar, exemplar_ood, vis_dict, epoch=epoch, best=True, to_plot=to_plot, writer=writer)
#visual_evaluation(vae, args, exemplar, exemplar_ood, vis_dict, epoch=epoch, tag='BEST', to_plot=to_plot,
# writer=writer)
to_print = '====> BEST TEST Avg loss: {:.4f} -- Avg mse: {:.4f} -- Avg kl: {:.4f}'.format(
eval_loss,
eval_mse,
eval_kl)
if args.debug:
print(to_print)
else:
logger.info(to_print)
if not args.debug:
torch.save(vae.state_dict(), args.snap_dir + '_best.model')
best_loss = eval_loss
if writer == 'wandb':
wandb.finish()