-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1_train_NS.py
297 lines (243 loc) · 10.9 KB
/
1_train_NS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import argparse
import torch
from utils.monitoring import make_directories, compute_parameter_grad, get_logger, \
plot_gif, visualize, plot_img, str2bool, visual_evaluation
from utils.data_loader import load_dataset_exemplar
from model.NS.model import select_model
from model.NS.util import select_optimizer, count_params, model_kwargs, set_seed
from torch import optim
import torch.nn as nn
import numpy as np
import random
from torch.optim.lr_scheduler import ReduceLROnPlateau
from operator import add
import wandb
import sys
from model.NS.parser import parse_args
parser = parse_args()
parser.add_argument('--download_data', type=eval, default=False, choices=[True, False])
parser.add_argument('--dataset_root', type=str, default="/media/data_cifs_lrs/projects/prj_control/data")
parser.add_argument('--input_type', type=str, default='binary',
choices=['binary'], help='type of the input')
parser.add_argument('--batch_size', type=int, default=128, metavar='BATCH_SIZE',
help='input batch size for training')
parser.add_argument('--learning_rate', type=float, default=1e-3, metavar='LR',
help='learning rate of the optimizer')
parser.add_argument('--epoch', type=int, default=200, metavar='EPOCH', help='number of epoch')
parser.add_argument("--input_shape", nargs='+', type=int, default=[1, 50, 50],
help='shape of the input [channel, height, width]')
parser.add_argument('-od', '--out_dir', type=str, default='X',
metavar='OUT_DIR', help='output directory for model snapshots etc.')
parser.add_argument('--debug', default=False, action='store_true', help='debugging flag (do not save the network)')
parser.add_argument('--beta_adam', type=float, default=0.9, help='value of the first order beta in adam optimizer')
parser.add_argument('--clip_value', type=float, default=5, help='value of the gradient clipping')
parser.add_argument("--exemplar", type=str2bool, nargs='?', const=True, default=True, help="For conditional VAE")
parser.add_argument('--model_name', type=str, default='ns', choices=['ns', 'hfsgm', 'chfsgm_multi', 'tns', 'cns', 'ctns'],
help="type of the model ['ns', 'hfsgm', 'chfsgm_multi', 'tns', 'cns', 'ctns]")
parser.add_argument('--preload', default=True, action='store_true', help='preload the dataset')
parser.add_argument('--beta', type=float, default=1.0, metavar='BETA', help='beta that weight the KL in the vae Loss')
parser.add_argument("--exemplar_type", default='prototype', choices=['prototype', 'first', 'shuffle'],
metavar='EX_TYPE', help='type of exemplar')
args = parser.parse_args()
if args.device == 'meso':
args.device = torch.cuda.current_device()
default_args = parser.parse_args([])
if args.seed is not None:
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
if args.debug:
visual_steps, monitor_steps = 1, 25
else:
visual_steps, monitor_steps = 100, 200
args = make_directories(args)
kwargs = {'preload': args.preload}
train_loader, test_loader, args = load_dataset_exemplar(args, shape=args.input_shape, drop_last=True, **kwargs)
vae = select_model(args)(**model_kwargs(args))
vae = vae.to(args.device)
# We use the standard Neural Statistician architecture in our experiments,
# which can be found at model/NS/model/NS/ns.py
# Majority of the code is adopted from https://github.com/georgosgeorgos/hierarchical-few-shot-generative-models
# and https://github.com/comRamona/Neural-Statistician
optimizer = optim.Adam(vae.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
scheduler = ReduceLROnPlateau(
optimizer,
mode="max",
patience=args.patience,
factor=args.lr_step,
min_lr=args.lr_min,
)
if not args.debug:
logger = get_logger(args, __file__)
writer = None
else:
logger = None
writer = None
print(vae)
to_print = 'number of parameters : {0:,}'.format(sum(p.numel() for p in vae.parameters()))
print(to_print)
logger.info(to_print)
# exit()
vis_dict = {"data": None, "reco": None, "reco_seq": None, "bu_att_seq": None,
"gene_in": None, "gene_seq_in": None, "exemplar_in": None,
"gene_ood": None, "gene_seq_ood": None, "exemplar_ood": None, "data_test": None}
to_plot = ['reco', 'gene_in']
if args.exemplar:
to_plot += ['gene_ood']
best_loss = np.inf
def lr_f(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
from utils.custom_transform import Binarize_batch, Scale_0_1_batch
scale_01, binarize = Scale_0_1_batch(), Binarize_batch(binary_threshold=0.5)
#from torchvision.utils import save_image
#def save_test_grid(inputs, samples, save_path, n=30):
# size = 50
# inputs = 1 - inputs.cpu().data.view(-1, 5, 1, size, size)[:n]
# reconstructions = samples.cpu().data.view(-1, 5, 1, size, size)[:n]
# images = torch.cat((inputs, reconstructions), dim=1).view(-1, 1, size, size)
# save_image(images, save_path, nrow=n)
# return images
size = args.input_shape[-1]
print("Beta = ", args.beta)
for epoch in range(args.epoch):
vae.train()
train_loss, kl_loss, mse_loss, all_grad, train_vlb = 0, 0, 0, 0, 0
len_dataset = 0
batch_exemplar = None
vis_dict["reco"] = None
vis_dict["data"] = None
for batch_idx, data in enumerate(train_loader):
x=data
x = x.to(args.device).float()
out = vae.step(x,
args.alpha,
optimizer,
args.clip_gradients,
args.free_bits,
args.beta)
loss = out["loss"]
mse = out["mse"]
kl_c = out["kl_c"]
kl_z = out["kl_z"]
kld = kl_c + kl_z
x_hat = out["x_rec"]
vlb = out["vlb"]
x_hat = x_hat[:, :1, :, :, :].reshape((-1, 1, size, size))
exemplar = data[:, 1:2, :, :, :].to(args.device).reshape((-1, 1, 50, 50)).float()
# monitor visualization
if batch_idx == len(train_loader) - 2:
data = data[:, :1, :, :, :].to(args.device).reshape((-1, 1, 50, 50)).float()
vis_dict["data"] = data.detach()
if args.model_name == 'vae_draw':
vis_dict["reco"] = x_hat.probs.detach()
else:
vis_dict["reco"] = x_hat.detach()
if args.exemplar:
vis_dict["exemplar_in"] = exemplar.detach()
# accumulate for epoch monitoring
train_loss += loss.item()
mse_loss += mse.item()
kl_loss += kld.item()
train_vlb += vlb.item()
if batch_idx % monitor_steps == 0:
to_print = 'Train Epoch: {} [{}/{} ({:.0f}%)]\tMSE: {:.3f}\tVLB: {:.3f}\tKL_C: {:.3f}\tKL_Z: {:.3f}\talpha: {:.4f}\tlr: {:.4f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
mse.item(),
vlb.item(),
kl_c.item(),
kl_z.item(),
args.alpha,
lr_f(optimizer))
if args.debug:
print(to_print)
else:
logger.info(to_print)
train_loss /= len(train_loader)
mse_loss /= len(train_loader)
kl_loss /= len(train_loader)
all_grad /= len(train_loader)
args.alpha *= args.alpha_step
to_print = '====> Epoch: {} Avg loss: {:.4f} -- Avg mse: {:.4f} -- Avg kl: {:.4f} -- Avg grad: {:.4f} -- alpha:{:.2f} -- lr:{:.6f} '.format(
epoch, train_loss,
mse_loss,
kl_loss,
all_grad,
args.alpha,
lr_f(optimizer))
if args.debug:
print(to_print)
else:
logger.info(to_print)
#evaluation
with torch.no_grad():
vae.eval()
eval_loss, eval_kl, eval_mse, eval_vlb = 0, 0, 0, 0
len_dataset = 0
for batch_idx, data in enumerate(test_loader):
x_test = data
x_test = x_test.to(args.device).float()
out = vae.forward(x_test)
mse = out["mse"]
x_hat = out["xp"]
x_hat = x_hat[:, :1, :, :, :].reshape((-1, 1, 50, 50))
out = vae.loss(out)
loss = out["loss"]
kld = out["kl_c"] + out["kl_z"]
vlb_test = out["vlb"]
exemplar_ood = data[:, 1:2, :, :, :].to(args.device).reshape((-1, 1, 50, 50))
if batch_idx == len(test_loader) - 2:
data = data[:, :1, :, :, :].to(args.device).reshape((-1, 1, 50, 50)).float()
vis_dict["data_test"] = data.detach()
if args.model_name == 'vae_draw':
vis_dict["reco_test"] = x_hat.probs.detach()
else:
vis_dict["reco_test"] =x_hat.detach()
if args.exemplar:
exemplar_ood = exemplar_ood.to(args.device).float()
vis_dict["exemplar_ood"] = exemplar_ood.detach()
eval_loss += loss.item()
eval_mse += mse.item()
eval_kl += kld.item()
eval_vlb += vlb_test.item()
eval_loss /= len(test_loader)
eval_mse /= len(test_loader)
eval_kl /= len(test_loader)
eval_vlb /= len(test_loader)
scheduler.step(eval_vlb)
to_print = '====> TEST Epoch: {} Avg loss: {:.4f} -- Avg mse: {:.4f} -- Avg kl: {:.4f} -- alpha:{:.2f} -- lr:{:.6f}'.format(
epoch, eval_loss,
eval_mse,
eval_kl,
args.alpha,
lr_f(optimizer))
if args.debug:
print(to_print)
else:
logger.info(to_print)
if (epoch % visual_steps == 0) or (epoch == args.epoch - 1):
visual_evaluation(vae, args, exemplar.to(args.device), exemplar_ood.float(), vis_dict, epoch=epoch, best=False, to_plot=to_plot, writer=writer)
if eval_loss < best_loss:
visual_evaluation(vae, args, exemplar.to(args.device), exemplar_ood.float(), vis_dict, epoch=epoch, best=True, to_plot=to_plot, writer=writer)
to_print = '====> BEST TEST Avg loss: {:.4f} -- Avg mse: {:.4f} -- Avg kl: {:.4f}'.format(
eval_loss,
eval_mse,
eval_kl)
if args.debug:
print(to_print)
else:
logger.info(to_print)
if not args.debug:
torch.save(vae.state_dict(), args.snap_dir + '_best.model')
best_loss = eval_loss
filename = args.snap_dir + f"{args.sample_size}-shot.png"
path = filename
with torch.no_grad():
samples = vae.conditional_sample_cqL(x_test)["xp"]
conditional_samples = save_test_grid(x_test, samples, path)
filename = args.snap_dir + f"{args.sample_size}-shot_REC.png"
path = filename
with torch.no_grad():
samples = vae.reconstruction(x_test)
conditional_samples = save_test_grid(x_test, samples, path)