-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path06. Sorting. Triangle.swift
40 lines (32 loc) · 1.38 KB
/
06. Sorting. Triangle.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import Foundation
import Glibc
// Solution @ Sergey Leschev, Belarusian State University
// 06. Sorting. Triangle.
// An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
// A[P] + A[Q] > A[R],
// A[Q] + A[R] > A[P],
// A[R] + A[P] > A[Q].
// For example, consider array A such that:
// A[0] = 10 A[1] = 2 A[2] = 5
// A[3] = 1 A[4] = 8 A[5] = 20
// Triplet (0, 2, 4) is triangular.
// Write a function:
// class Solution { public int solution(int[] A); }
// that, given an array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
// For example, given array A such that:
// A[0] = 10 A[1] = 2 A[2] = 5
// A[3] = 1 A[4] = 8 A[5] = 20
// the function should return 1, as explained above. Given array A such that:
// A[0] = 10 A[1] = 50 A[2] = 5
// A[3] = 1
// the function should return 0.
// Write an efficient algorithm for the following assumptions:
// N is an integer within the range [0..100,000];
// each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
public func solution(_ A: inout [Int]) -> Int {
let count = A.count
if count < 3 { return 0 }
let sorted = A.sorted()
for i in 0...count - 3 where sorted[i] + sorted[i + 1] > sorted[i + 2] { return 1 }
return 0
}