Hannes Hauswedell 9.1. The aligned range submodule

of these concepts has been agreed upon by the SeqAn team but not yet fully implemented in the
current master branch. This is the specification that I propose.

seqan3::aligned_range<T requires:

* 1 must also model at least seqan3::forward_range so it can safely be iterated over multiple
times.

® seqan3::is_gap(r, it) must be valid, where r isof type T and it is an iterator of that range.

— seqan3::is_gap is a customisation point object defined for this purpose.

It returns true or false depending on whether the element pointed to by it represents
a gap or not.

The CPO has a default implementation for ranges whose alphabet is comparable with
seqan3::gap .

Custom implementations / specialisations can be given in the typical ways (see subsec-
tion 6.1.2).

This concept is met automatically by e.g. std::vector<seqan3::gapped<seqan3: :dna4-> , but it also allows
adapting ranges where the gap information cannot be queried directly or that use an entirely
different alphabet to indicate gap symbols.

seqan3: :writable_aligned_range<T requires:
e T must also model seqan3::aligned_range .

® seqan3::insert_gaps(r, it, n) must be valid, where r is of type 1, it is an iterator of that
range and n is of type size t.

— seqan3::insert_gaps isa customisation point object defined for this purpose.

— Itinserts n gap symbols into r before it . The third parameter is optional, by default 1
gap is inserted.

— The CPO has a default implementation for ranges that provide a member invocable in
the following way: .insert(it, n, seqan3::gap{}).If n equals 1, it equals the end of the
range and the following statement is valid, it is chosen instead: .push_back(seqan3::gap{}) .

— Custom implementations / specialisations can be given in the typical ways (see subsec-
tion 6.1.2).

® seqan3::remove gaps(r, it, sen) must be valid, where r is of type T, it isaniterator of that
range and sen is a sentinel or iterator of that range.

— seqan3::remove_gaps is a customisation point object defined for this purpose.

— Itremoves all gap symbols between it and sen (notincluding sen ). The third parameter
is optional, by default only a single gap is removed (if present). The number of removed
gaps is returned.

— The CPO has a default implementation for all ranges that model seqan3::aligned_range,
it calls std ranges: :remove_if(it, sen, segan3::is_gap) . If std::next(it) equals the end of
the range, seqan3::is_gap(*it) is true and the following statement is valid, it is chosen
instead: r.pop_back() .

— Custom implementations / specialisations can be given in the typical ways (see subsec-

193



Chapter 9. The Alignment module Hannes Hauswedell

tion 6.1.2).

This definition implies that standard containers and types modelled after them automatically satisfy
the requirements of seqan3::writable_aligned_range if their value type is seqan3::gapped (or a
more nested type including seqan3::gap ).

In addition to these concepts a third two-parameter concepts is defined.

resettable_aligned_range<aligned_t, unaligned_t requires:

® aligned_t must also model seqan3::writable_aligned_range .

® seqan3::reset_aligned range(r, src) must be valid where r is of type aligned_t and src is of
type unaligned_t .

— segan3::reset_aligned_range is a CPO defined for this purpose.

— It “assigns” the src to the r. The exact semantics depend on the aligned_t, but it is
assumed that this CPO clears all gaps from r and that std::ranges::equal(r, s) is valid
and returns true after the CPO is invoked.

— The CPO defaults to r.reset(src) if thatis valid. For SeqAn3’ gap decorators over the

unaligned_t this resets the internal pointer to the newly specified range (in addition to
clearing gap information).

— The CPO has an implementation for all types that are seqan3::back_insertable_with the
source alphabet type (containers). r is cleared and elements are copied from the source
and converted.

— Custom implementations / specialisations can be given in the typical ways (see subsec-
tion 6.1.2).

The defaultimplementations cover assigning e.g. std::vector<seqan3::dna4> to either std::vector<segan3::gapped<seqan:
(clear, COpy) Or seqan3::gap_decorator<std: :vector<segan3::dna4 (Clear, reset).

9.1.2. Gap decorators

As the default implementations for the CPOs have already indicated, the simplest way to make
an aligned range from a non-aligned range is to create a std::vector<seqan3::gapped<T> where T is
the alphabet of the original range and copy all elements into this vector interspersing gap symbols
where needed. This kind of aligned range has the best possible read performance and especially for
small ranges, the cost of random inserts is still tolerable. Since the entire original range needs to be
copied, the space overhead, however, is very noticeable — assuming that the original range needs to
be kept in memory, too.?

To reduce space and (potentially) increase random write performance, various adaptors can be
devised that only hold a pointer to the original range and store the gap information in separate data
structures. Various approaches and their algorithmic complexities are shown in Table 9.3. Here are
brief descriptions:

Vector of gapped The full-fledged vector over a gapped alphabet. Fast, but huge size overhead.

Sparse bitvector An adaptor that holds an sdsl::sd_vector of the aligned sequence’s size (n+g)
with gap positions indicated by a 1. Useful if 9/, is small and no modifications happen after

For small ranges this might still be worth it!

194



