-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
121 lines (100 loc) · 4.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import logging
import os
import KoBart
import dataset
import torch
import numpy as np
from torch.utils.data import DataLoader
from transformers.optimization import AdamW, get_cosine_schedule_with_warmup
from tqdm import tqdm
import math
logger = logging.getLogger()
logger.setLevel(logging.INFO)
# Config
batch_size = 16
epochs = 10
warmup_ratio = 0.1
learning_rate = 3e-5
grad_clip = 1.0
train_log_interval = 100
validation_interval = 2000
save_interval = 2000
# Model, tokenizer init
model = KoBart.KoBARTConditionalGeneration()
tokenizer = model.tokenizer
# Data file path
train_path = 'data/train.tsv'
dev_path = 'data/dev.tsv'
# dataset, dataloader
train_dataset = dataset.KoBARTQGDataset(train_path, tokenizer)
train_dataloader = DataLoader(train_dataset, batch_size)
dev_dataset = dataset.KoBARTQGDataset(dev_path, tokenizer)
dev_dataloader = DataLoader(dev_dataset, batch_size)
# optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(
nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(
nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate, correct_bias=False)
# scheduler
data_len = len(train_dataloader)
num_train_steps = int(data_len / batch_size * epochs)
num_warmup_steps = int(num_train_steps * warmup_ratio)
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_train_steps)
# logging data info
logging.info(f'data length {data_len}')
logging.info(f'num_train_steps : {num_train_steps}')
logging.info(f'num_warmup_steps : {num_warmup_steps}')
# device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# dev
def _validate(
model: KoBart.KoBARTConditionalGeneration,
dev_dataloader: DataLoader,
device: torch.device,
logger: logging.Logger,
global_step: int,
):
model.eval()
loss_list = []
for batch_data in tqdm(dev_dataloader, desc="[EVAL]"):
with torch.no_grad():
input_ids, decoder_input_ids, labels = tuple(value.to(device) for value in batch_data.values())
model_outputs = model.forward(input_ids, decoder_input_ids, labels)
loss_list.append(model_outputs.loss.item())
mean_loss = np.mean(loss_list)
logger.info(f"[EVAL] global_step:{global_step} loss:{mean_loss:.4f} perplexity:{math.exp(mean_loss):.4f}")
model.train()
return mean_loss
model.train()
loss_list_between_log_interval = []
for epoch_id in range(epochs):
for step_index, batch_data in tqdm(enumerate(train_dataloader), f"[TRAIN] EP:{epoch_id}", total=len(train_dataloader)):
global_step = len(train_dataloader) * epoch_id + step_index + 1
optimizer.zero_grad()
input_ids, decoder_input_ids, labels = tuple(value.to(device) for value in batch_data.values())
model_outputs = model.forward(input_ids, decoder_input_ids, labels)
model_outputs.loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
optimizer.step()
scheduler.step()
# for logging
loss_list_between_log_interval.append(model_outputs.loss.item())
if global_step % train_log_interval == 0:
mean_loss = np.mean(loss_list_between_log_interval)
logger.info(
f"EP:{epoch_id} global_step:{global_step} "
f"loss:{mean_loss:.4f} perplexity:{math.exp(mean_loss):.4f}"
)
loss_list_between_log_interval.clear()
if global_step % validation_interval == 0:
dev_loss = _validate(model, dev_dataloader, device, logger, global_step)
if global_step % save_interval == 0:
state_dict = model.state_dict()
model_path = os.path.join('output', f"kobart_step_{global_step}.pth")
logger.info(f"global_step: {global_step} model saved at {model_path}")
torch.save(state_dict, model_path)