-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
384 lines (299 loc) · 15.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import os
import json
import logging
import numpy as np
import torch
import random
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, DistributedSampler, SequentialSampler
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from transformers.models.auto.modeling_auto import MODEL_MAPPING
from transformers import (
WEIGHTS_NAME,
AdamW,
get_linear_schedule_with_warmup,
)
from src.dataset import NELDataset, train_collate_fn
from src.nel import NELModel
from src.metric_topk import cal_top_k
from time import time
from src.args import parse_arg
from src.dataset import PersonDataset, NELDataset
from src.prepare_wikipedia import Wikipedia
from src.prepare_richpedia import Richpedia
from src.prepare_wikiperson import Wikiperson
# from src.prepare_wikidiverse import Wikidiverse
# 1、创建一个logger
logger = logging.getLogger('mylogger')
logger.setLevel(logging.DEBUG)
# 2、创建一个handler,用于写入日志文件
fh = logging.FileHandler('../log.log')
fh.setLevel(logging.DEBUG)
# 再创建一个handler,用于输出到控制台
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
# 3、定义handler的输出格式(formatter)
formatter = logging.Formatter('%(asctime)s: %(message)s', datefmt="%m/%d %H:%M:%S")
# 4、给handler添加formatter
fh.setFormatter(formatter)
ch.setFormatter(formatter)
# 5、给logger添加handler
logger.addHandler(fh)
logger.addHandler(ch)
# 忽略not init权重的warning提示
from transformers import logging
logging.set_verbosity_error()
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
def load_and_cache_examples(args, mode, dataset="wiki", logger=None):
# 0 caption 没有输入prompt
number = 1 # question = "Question: Who are the characters in the picture? Answer: "
cached_features_file = os.path.join(args.data_dir, "cached_{}_{}".format(mode, args.dataset))
data_processor_mapping = {"wiki": Wikipedia, "rich": Richpedia, "person" : Wikiperson}
if mode != 'test' and os.path.exists(cached_features_file) and not args.overwrite_cache:
features = torch.load(cached_features_file)
else:
data_processor = data_processor_mapping[dataset](args)
logger.info("Creating features %s at %s" % (cached_features_file, args.data_dir))
data = data_processor.read_examples_from_file(args.data_dir, mode)
features = data_processor.clip_feature(data)
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
contain_search_res = False if mode == "train" else True
if args.dataset == "person":
all_img_id = [f.img_id for f in features]
all_answer_id = [f.answer for f in features]
all_image_feature = [f.image_feature for f in features]
dataset = PersonDataset(args, all_img_id, all_answer_id, all_image_feature, contain_search_res)
else:
dataset = NELDataset(args, features, contain_search_res)
return dataset
def train(args, train_dataset, nel_model, fold=""):
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size,
collate_fn=train_collate_fn if args.dataset not in ["person", "diverse"] else None)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
params_decay = [p for n, p in nel_model.named_parameters() if not any(nd in n for nd in no_decay)]
params_nodecay = [p for n, p in nel_model.named_parameters() if any(nd in n for nd in no_decay)]
optimizer_grouped_parameters = [{"params": params_decay, "weight_decay": args.weight_decay},
{"params": params_nodecay, "weight_decay": 0.0}, ]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon,
no_deprecation_warning=True)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")):
# Load in optimizer and scheduler states
logger.info("loading the existing model weights")
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
# shareSwin_model = SwinForAffwildClassification(args).to(args.device)
# '''loading the pretrained SWIN (Swin Transformer) model and updating the parameter dictionary.'''
# model_dict = shareSwin_model.state_dict()
# pretrained_dict = torch.load(args.pretrained_backbone_path)['state_dict']
# new_pretrained_dict = {}
# for k in model_dict:
# if k in pretrained_dict:
# if k == 'classifier.weight':
# continue
# if k == 'classifier.bias':
# continue
# if k[:5] == 'swin.':
# k_val = k[5:]
# else:
# k_val = k
# new_pretrained_dict[k] = pretrained_dict['backbone.' + k_val] # tradition training
# model_dict.update(new_pretrained_dict)
# shareSwin_model.load_state_dict(model_dict)
global_step, epochs_trained, steps_trained_in_current_epoch = 0, 0, 0
best_result = [0, 0, 0, 0]
tr_loss, logging_loss = 0.0, 0.0
nel_model.zero_grad()
set_seed(args) # Added here for reproductibility
epoch_start_time = time()
step_start_time = None
for epoch in range(epochs_trained, int(args.num_train_epochs)):
if epoch == epochs_trained:
print(f"Epoch: {epoch + 1}/{int(args.num_train_epochs)} begin.")
else:
print(f"Epoch: {epoch + 1}/{int(args.num_train_epochs)} begin ({(time() - epoch_start_time) / (epoch - epochs_trained):2f}s/epoch).")
epoch_iterator = train_dataloader
num_steps = len(train_dataloader)
for step, batch in tqdm(enumerate(epoch_iterator), desc="Train", ncols=50, total=num_steps):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
nel_model.train()
for k in batch:
batch[k] = batch[k].to(args.device) if isinstance(batch[k], torch.Tensor) else batch[k]
nel_inputs = {
"mention": batch["mention_feature"].float(),
"text": batch["text_feature"].float(),
"total": batch["total_feature"].float(),
"profile": batch["profile_feature"].float(),
"segement": batch["segement_feature"].float(),
"pos_feats": batch["pos"],
"neg_feats": batch["neg"],
"identity": batch["identity_feature"].float()
}
outputs = nel_model(**nel_inputs)
loss = outputs[0]
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(nel_model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
nel_model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# # Log metrics
tb_writer.add_scalar("lr", scheduler.get_last_lr()[0], global_step)
if step_start_time is None:
step_start_time = time()
print()
logger.info(
f"loss_{global_step}: {(tr_loss - logging_loss) / args.logging_steps}, epoch {epoch + 1}: {step + 1}/{num_steps}")
else:
print()
logger.info(
f"epoch {epoch + 1}, loss: {(tr_loss - logging_loss) / args.logging_steps}")
step_start_time = time()
logging_loss = tr_loss
# save model if args.save_steps>0
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
if args.local_rank == -1 and args.evaluate_during_training:
results, _ = evaluate(args, nel_model, mode=f"dev{fold}")[:2]
show_result = list(results.values())
if show_result[0] > best_result[0]:
best_result = show_result
best_result.append(epoch)
logger.info(
"### EVAL RESULT: {0:.3f}, {1:.3f}, {2:.3f}, {3:.3f} at {4}".format(show_result[0]*100,
show_result[1]*100,
show_result[2]*100,
show_result[3]*100, epoch))
logger.info(
"### BEST RESULT: {0:.3f}, {1:.3f}, {2:.3f}, {3:.3f} at {4}".format(best_result[0]*100,
best_result[1]*100,
best_result[2]*100,
best_result[3]*100,
best_result[4]))
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
tb_writer.add_scalar("lr", scheduler.get_last_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
if 0 < args.max_steps < global_step:
break
if 0 < args.max_steps < global_step:
break
if args.local_rank in [-1, 0]:
tb_writer.close()
def evaluate(args, nel_model, mode):
time_eval_beg = time()
eval_dataset = load_and_cache_examples(args, mode, args.dataset, logger)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
if args.dataset in ["person", "diverse"]:
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.train_batch_size)
else:
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=train_collate_fn)
eval_loss, nb_eval_steps = 0.0, 0
nel_model.eval()
# shareSwin_model = SwinForAffwildClassification(args).to(args.device)
# '''loading the pretrained SWIN (Swin Transformer) model and updating the parameter dictionary.'''
# model_dict = shareSwin_model.state_dict()
# pretrained_dict = torch.load(args.pretrained_backbone_path)['state_dict']
# new_pretrained_dict = {}
# for k in model_dict:
# if k in pretrained_dict:
# if k == 'classifier.weight':
# continue
# if k == 'classifier.bias':
# continue
# if k[:5] == 'swin.':
# k_val = k[5:]
# else:
# k_val = k
# new_pretrained_dict[k] = pretrained_dict['backbone.' + k_val] # tradition training
# model_dict.update(new_pretrained_dict)
# shareSwin_model.load_state_dict(model_dict)
# shareSwin_model.eval()
all_ranks = []
time_eval_rcd = time()
nsteps = len(eval_dataloader)
with torch.no_grad():
for i, batch in tqdm(enumerate(eval_dataloader), desc='Eval', ncols=50, total=nsteps):
for k in batch:
if isinstance(batch[k], torch.Tensor):
batch[k] = batch[k].to(args.device)
nel_inputs = {
"mention": batch["mention_feature"].float(),
"text": batch["text_feature"].float(),
"total": batch["total_feature"].float(),
"profile": batch["profile_feature"].float(),
"segement": batch["segement_feature"].float(),
"pos_feats": batch["pos"],
"neg_feats": batch["neg"],
"identity": batch["identity_feature"].float()
}
outputs = nel_model(**nel_inputs)
tmp_eval_loss, query = outputs[:2]
if args.n_gpu > 1:
tmp_eval_loss = tmp_eval_loss.mean() # mean() to average on multi-gpu parallel evaluating
tmp_eval_loss = tmp_eval_loss.mean()
eval_loss += tmp_eval_loss
pos_feat_trans = batch["pos"]
neg_feat_trans = batch["search_res"]
rank_list, sim_p, sim_n = cal_top_k(args, query, pos_feat_trans, neg_feat_trans)
all_ranks.extend(rank_list)
nb_eval_steps += 1
if (i + 1) % 100 == 0:
print(f"{mode}: {i + 1}/{nsteps}, loss: {tmp_eval_loss}, {time() - time_eval_rcd:.2f}s/100steps")
time_eval_rcd = time()
eval_loss = eval_loss.item() / nb_eval_steps
all_ranks = np.array(all_ranks)
results = {
"top1": int(sum(all_ranks <= 1)) / len(eval_dataset),
"top5": int(sum(all_ranks <= 3)) / len(eval_dataset),
"top10": int(sum(all_ranks <= 5)) / len(eval_dataset),
"top20": int(sum(all_ranks <= 20)) / len(eval_dataset),
}
logger.info(f"Eval loss: {eval_loss}, Eval time: {time() - time_eval_beg:2f}")
return results, eval_loss, all_ranks
def main():
args = parse_arg()
args.n_gpu = 0
args.device = torch.device("cuda:"+str(args.gpu_id) if torch.cuda.is_available() else "cpu")
set_seed(args)
nel_model = NELModel(args)
for p in nel_model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
print(args.device)
nel_model.to(args.device)
train_dataset = load_and_cache_examples(args, "train", args.dataset, logger)
train(args, train_dataset, nel_model)
if __name__ == "__main__":
main()