-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrl_train.py
546 lines (482 loc) · 23.1 KB
/
rl_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import argparse
import os
import pprint as pp
import numpy as np
import torch
import torch.optim as optim
import torch.autograd as autograd
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy as np
import pandas as pd
import multiprocessing
import datetime
from tqdm import tqdm
from multiprocessing import Pool
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torch.utils.data import DataLoader,Dataset
from torch.utils.tensorboard import SummaryWriter
from tools.rl import NeuralCombOptRL
from tools.packing import NFPAssistant,PolyListProcessor
from heuristic import BottomLeftFill
from sequence import GA
train_preload=None
val_preload=None
training_dataset=None
val_dataset=None
class Preload(object):
def __init__(self,source):
self.data=np.load(source,allow_pickle=True)
def getPolysbySeq(self,index,sequence):
# sequence:(a,b,c...) 意思是把第a个放到第1个
polys=self.data[index]
polys_new=[]
for seq in sequence:
polys_new.append(polys[seq])
polys_new=np.array(polys_new)
return polys_new.tolist()
class PolygonsDataset(Dataset):
def __init__(self,size,max_point_num,path=None,full_size=0,norm=True):
'''
size: 选取的数据集容量
max_point_num: 最大点的个数
path: 从文件加载
full_size:数据集完整容量 若为0则对全数据集进行shuffle
norm: 是否进行归一化
'''
x=[]
self.choice=False if full_size==0 else True
if not path:
print('Warning: No load path')
else:
data=np.load(path,allow_pickle=True)
if not self.choice:
choice=range(size)
else:
choice=np.random.choice(np.array(range(full_size)),size,replace=False)
print('Choose {} samples in total {}'.format(size,full_size))
print('Samples like: ',choice)
for i in choice:
polys=data[i]
if norm:
_max=np.max(polys)
_min=np.min(polys)
med=(_max+_min)/2
ran=(_max-_min)
polys=2*(polys-med)/ran
polys=polys.T
x.append(polys)
self.x=np.array(x)
self.input=torch.from_numpy(self.x)
# 定义数据获取顺序
self.shuffle=np.array(range(self.__len__()))
np.random.shuffle(self.shuffle)
def __getitem__(self, index):
real_index=index if self.choice else self.getRealIndex(index)
inputs=self.input[real_index]
return inputs
def __len__(self):
return len(self.input)
def getRealIndex(self,index):
return self.shuffle[index]
def updateRealIndex(self):
np.random.shuffle(self.shuffle)
# print('Shuffled:', self.shuffle)
"""class BottomLeftFillThread (threading.Thread):
# 多线程和多进程一起用会报错 已弃用
def __init__(self, threadID, width, poly):
threading.Thread.__init__(self)
self.threadID = threadID
self.width = width
self.poly = poly
def getHeight(self,polys,width):
'''
polys: sample_solution
width: 容器宽度
利用BottomLeftFill计算Height
'''
try:
#df = pd.read_csv('record/rec100_nfp.csv') # 把nfp history读入内存
#nfp_asst=NFPAssistant(polys,load_history=True,history=df)
bfl=BottomLeftFill(width,polys)
return bfl.getLength()
except:
return 9999
def run(self):
# print ("开启BLF线程:" + str(self.threadID))
self.height=self.getHeight(self.poly,self.width)
# print ("退出BLF线程:" + str(self.threadID))
def getResult(self):
try:
return self.height
except Exception:
return None
def reward_old(sample_solution, USE_CUDA=False):
# start=datetime.datetime.now()
# print(start,"开始reward")
# sample_solution shape: [sourceL, batch_size, input_dim]
batch_size = sample_solution[0].size(0)
n = len(sample_solution)
points=[]
for i in range(n):
sample=sample_solution[i]
points.append(sample.cpu().numpy())
points=np.array(points)
result=np.zeros(batch_size)
# threads=[] # 多线程计算BLF
if trainning:
p=Pool() # 多进程计算BLF
res=[]
for index in range(batch_size):
poly=points[:,index,:]
poly_new=[]
for i in range(len(poly)):
poly_new.append(poly[i].reshape(args['max_point_num'],2).tolist())
poly_new=drop0(poly_new)
nfp_asst=NFPAssistant(poly_new,load_history=True,history_path='record/{}/{}.csv'.format(args['run_name'],index+cur_batch*batch_size))
# blf=BottomLeftFill(args['width'],poly_new,NFPAssistant=nfp_asst)
res.append(p.apply_async(getBLF,args=(args['width'],poly_new,nfp_asst)))
# result[index]=blf.getLength()
# thread = BottomLeftFillThread(index,args['width'],poly_new)
# threads.append(thread)
p.close()
p.join()
# end=datetime.datetime.now()
# print(end,"结束reward")
# print(end-start)
for index in range(batch_size):
result[index]=res[index].get()
else: # 验证时不开多进程
poly=points[:,0,:]
poly_new=[]
for i in range(len(poly)):
poly_new.append(poly[i].reshape(args['max_point_num'],2).tolist())
poly_new=drop0(poly_new)
nfp_asst=NFPAssistant(poly_new,load_history=True,history_path='record/{}_val/{}.csv'.format(args['val_name'],cur_batch))
result[0]=getBLF(args['width'],poly_new,nfp_asst)
# for t in threads:
# t.start()
# for t in threads:
# t.join()
# for index in range(batch_size):
# result[index]=threads[index].getResult()
return torch.Tensor(result)"""
def str2bool(v):
return v.lower() in ('true', '1')
def getBLF(width,poly,nfp_asst):
blf=BottomLeftFill(width,poly,NFPAssistant=nfp_asst)
#blf.showAll()
return blf.getLength()
def getGA(width,poly,nfp_asst,generations=10):
polys_GA=PolyListProcessor.getPolyObjectList(poly,[0])
ga=GA(width,polys_GA,nfp_asst=nfp_asst,generations=generations,pop_size=10)
origin=ga.length_record[0]
best=ga.global_lowest_length
return origin-best
'''奖励函数'''
def reward(sample_solution, USE_CUDA=False):
# start=datetime.datetime.now()
# print(start,"开始reward")
# sample_solution shape: [sourceL, batch_size]
batch_size = sample_solution[0].size(0)
result=np.zeros(batch_size)
sequences=[]
for sample in sample_solution:
sequences.append(sample.numpy())
sequences=np.array(sequences)
if trainning:
if batch_size>20:
p=Pool() # 多进程计算BLF
res=[]
for index in range(batch_size):
sample_id=index+cur_batch*batch_size
real_id=training_dataset.getRealIndex(sample_id)
sequence=sequences[:,index]
poly_new=train_preload.getPolysbySeq(real_id,sequence)
nfp_asst=NFPAssistant(poly_new,load_history=True,history_path='record/{}/{}.csv'.format(args['run_name'],real_id))
res.append(p.apply_async(getBLF,args=(args['width'],poly_new,nfp_asst)))
p.close()
p.join()
for index in range(batch_size):
result[index]=res[index].get()
else:
for index in range(batch_size):
sample_id=index+cur_batch*batch_size
real_id=training_dataset.getRealIndex(sample_id)
sequence=sequences[:,index]
poly_new=train_preload.getPolysbySeq(real_id,sequence)
nfp_asst=NFPAssistant(poly_new,load_history=True,history_path='record/{}/{}.csv'.format(args['run_name'],real_id))
result[index]=getBLF(args['width'],poly_new,nfp_asst)
else: # 验证时不开多进程
sequence=sequences[:,0]
real_id=val_dataset.getRealIndex(cur_batch)
poly_new=val_preload.getPolysbySeq(real_id,sequence)
nfp_asst=NFPAssistant(poly_new,load_history=True,history_path='record/{}_val/{}.csv'.format(args['val_name'],real_id))
#nfp_asst=None
result[0]=getBLF(args['width'],poly_new,nfp_asst)
# end=datetime.datetime.now()
# print(end,"结束reward")
# print(end-start)
return torch.Tensor(result)
def plot_attention(in_seq, out_seq, attentions):
""" From http://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html"""
# Set up figure with colorbar
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(attentions.numpy(), cmap='bone')
fig.colorbar(cax)
# Set up axes
ax.set_xticklabels([' '] + [str(x) for x in in_seq], rotation=90)
ax.set_yticklabels([' '] + [str(x) for x in out_seq])
# Show label at every tick
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
plt.show()
if __name__ == "__main__":
multiprocessing.set_start_method('spawn',True)
parser = argparse.ArgumentParser(description="Neural Combinatorial Optimization with RL")
'''数据加载'''
parser.add_argument('--task', default='0430', help='')
parser.add_argument('--run_name', type=str, default='reg2379')
parser.add_argument('--val_name', type=str, default='fu')
parser.add_argument('--train_size', default=2379, help='')
parser.add_argument('--val_size', default=1, help='')
parser.add_argument('--is_train', type=str2bool, default=False, help='')
'''多边形参数'''
parser.add_argument('--width', default=760, help='Width of BottomLeftFill')
parser.add_argument('--max_point_num', default=4, help='')
'''网络设计'''
parser.add_argument('--embedding_dim', default=128, help='Dimension of input embedding')
parser.add_argument('--hidden_dim', default=128, help='Dimension of hidden layers in Enc/Dec')
parser.add_argument('--n_process_blocks', default=3, help='Number of process block iters to run in the Critic network')
parser.add_argument('--n_glimpses', default=2, help='No. of glimpses to use in the pointer network')
parser.add_argument('--use_tanh', type=str2bool, default=True)
parser.add_argument('--tanh_exploration', default=10, help='Hyperparam controlling exploration in the pointer net by scaling the tanh in the softmax')
parser.add_argument('--dropout', default=0., help='')
parser.add_argument('--terminating_symbol', default='<0>', help='')
parser.add_argument('--beam_size', default=1, help='Beam width for beam search')
'''训练设置'''
parser.add_argument('--batch_size', default=8, help='')
parser.add_argument('--actor_net_lr', default=1e-4, help="Set the learning rate for the actor network")
parser.add_argument('--critic_net_lr', default=1e-3, help="Set the learning rate for the critic network")
parser.add_argument('--actor_lr_decay_step', default=15000, help='')
parser.add_argument('--critic_lr_decay_step', default=5000, help='')
parser.add_argument('--actor_lr_decay_rate', default=0.96, help='')
parser.add_argument('--critic_lr_decay_rate', default=0.96, help='')
parser.add_argument('--reward_scale', default=2, type=float, help='')
parser.add_argument('--n_epochs', default=500, help='')
parser.add_argument('--random_seed', default=24601, help='')
parser.add_argument('--max_grad_norm', default=2.0, help='Gradient clipping')
parser.add_argument('--use_cuda', type=str2bool, default=False, help='') # 默认禁用CUDA
parser.add_argument('--critic_beta', type=float, default=0.7, help='Exp mvg average decay')
# Misc
parser.add_argument('--log_step', default=1, help='Log info every log_step steps')
parser.add_argument('--log_dir', type=str, default='logs')
parser.add_argument('--output_dir', type=str, default='outputs')
parser.add_argument('--epoch_start', type=int, default=0, help='Restart at epoch #')
parser.add_argument('--load_path', type=str, default='')
parser.add_argument('--disable_tensorboard', type=str2bool, default=False)
parser.add_argument('--plot_attention', type=str2bool, default=False)
parser.add_argument('--disable_progress_bar', type=str2bool, default=False)
args = vars(parser.parse_args())
# Pretty print the run args
pp.pprint(args)
# Set the random seed
torch.manual_seed(int(args['random_seed']))
# Optionally configure tensorboard
# if not args['disable_tensorboard']:
# configure(os.path.join(args['log_dir'], args['task'], args['run_name']))
# 改用torch集成的tensorboard
writer = SummaryWriter(os.path.join(args['log_dir'], args['task'], args['run_name']))
size = 12 # 解码器长度(序列长度)
input_dim = 128
reward_fn = reward # 奖励函数
training_dataset = PolygonsDataset(args['train_size'],args['max_point_num'],path='{}.npy'.format(args['run_name']))
val_dataset = PolygonsDataset(args['val_size'],args['max_point_num'],path='{}_val.npy'.format(args['val_name']))
train_preload = Preload('{}_xy.npy'.format(args['run_name']))
val_preload = Preload('{}_val_xy.npy'.format(args['val_name']))
for xxx in range(0,403):
args['load_path']='outputs/0429/reg2379/epoch-{}.pt'.format(xxx)
'''初始化网络/测试已有网络'''
if args['load_path'] == '':
model = NeuralCombOptRL(
input_dim,
int(args['embedding_dim']),
int(args['hidden_dim']),
size, # decoder len
args['terminating_symbol'],
int(args['n_glimpses']),
int(args['n_process_blocks']),
float(args['tanh_exploration']),
args['use_tanh'],
int(args['beam_size']),
reward_fn,
args['is_train'],
args['use_cuda'])
else:
print(' [*] Loading model from {}'.format(args['load_path']))
model = torch.load(
os.path.join(
os.getcwd(),
args['load_path']
))
model.actor_net.decoder.max_length = size
model.is_train = args['is_train']
'''结果保存'''
save_dir = os.path.join(os.getcwd(),
args['output_dir'],
args['task'],
args['run_name'])
try:
os.makedirs(save_dir)
except:
pass
#critic_mse = torch.nn.MSELoss()
#critic_optim = optim.Adam(model.critic_net.parameters(), lr=float(args['critic_net_lr']))
actor_optim = optim.Adam(model.actor_net.parameters(), lr=float(args['actor_net_lr']))
actor_scheduler = lr_scheduler.MultiStepLR(actor_optim,
range(int(args['actor_lr_decay_step']), int(args['actor_lr_decay_step']) * 1000,
int(args['actor_lr_decay_step'])), gamma=float(args['actor_lr_decay_rate']))
training_dataloader = DataLoader(training_dataset, batch_size=int(args['batch_size']),shuffle=False, num_workers=4)
validation_dataloader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=1)
critic_exp_mvg_avg = torch.zeros(1)
beta = args['critic_beta']
if args['use_cuda']:
model = model.cuda()
#critic_mse = critic_mse.cuda()
critic_exp_mvg_avg = critic_exp_mvg_avg.cuda()
step = 0
val_step = 0
if not args['is_train']: args['n_epochs'] = '1'
epoch = int(args['epoch_start'])
for i in range(epoch, epoch + int(args['n_epochs'])):
if args['is_train']:
# put in train mode!
model.train()
trainning=True
cur_batch=0
avg_reward = []
# sample_batch is [batch_size x input_dim x sourceL]
for batch_id, sample_batch in enumerate(tqdm(training_dataloader,
disable=args['disable_progress_bar'])):
bat = Variable(sample_batch)
if args['use_cuda']:
bat = bat.cuda()
R, probs, actions, actions_idxs = model(bat)
cur_batch=cur_batch+1
if batch_id == 0:
critic_exp_mvg_avg = R.mean()
else:
critic_exp_mvg_avg = (critic_exp_mvg_avg * beta) + ((1. - beta) * R.mean())
advantage = R - critic_exp_mvg_avg
logprobs = 0
nll = 0
for prob in probs:
# compute the sum of the log probs
# for each tour in the batch
logprob = torch.log(prob)
nll += -logprob
logprobs += logprob
# guard against nan
nll[(nll != nll).detach()] = 0.
# clamp any -inf's to 0 to throw away this tour
logprobs[(logprobs < -1000).detach()] = 0.
# multiply each time step by the advanrate
if args['use_cuda']:
reinforce = advantage.cuda() * logprobs
else:
reinforce = advantage * logprobs
actor_loss = reinforce.mean()
actor_optim.zero_grad() # 清空梯度
actor_loss.backward() # 反向传播
# clip gradient norms
torch.nn.utils.clip_grad_norm_(model.actor_net.parameters(),
float(args['max_grad_norm']), norm_type=2)
actor_optim.step()
actor_scheduler.step()
critic_exp_mvg_avg = critic_exp_mvg_avg.detach()
#critic_scheduler.step()
#R = R.detach()
#critic_loss = critic_mse(v.squeeze(1), R)
#critic_optim.zero_grad()
#critic_loss.backward()
#torch.nn.utils.clip_grad_norm_(model.critic_net.parameters(),
# float(args['max_grad_norm']), norm_type=2)
#critic_optim.step()
step += 1
# if not args['disable_tensorboard']:
# log_value('critic_loss', critic_loss.item(), step)
writer.add_scalar('reward', R.mean().item(), step)
avg_reward.append(R.mean().item())
writer.add_scalar('actor_loss', actor_loss.item(), step)
writer.add_scalar('critic_exp_mvg_avg', critic_exp_mvg_avg.item(), step)
# writer.add_scalar('nll', nll.mean().item(), step)
# if step % int(args['log_step']) == 0:
# # print('epoch: {}, train_batch_id: {}, avg_reward: {}'.format(
# # i, batch_id, R.mean().item()))
# example_output = []
# example_input = []
# for idx, action in enumerate(actions):
# # if task[0] == 'tsp':
# example_output.append(actions_idxs[idx][0].item())
# # else:
# # example_output.append(action[0].item()) # <-- ??
# example_input.append(sample_batch[0, :, idx][0])
# #print('Example train input: {}'.format(example_input))
# #print('Example train output: {}'.format(example_output))
writer.add_scalar('avg_reward', np.mean(avg_reward), i)
# Use beam search decoding for validation
model.actor_net.decoder.decode_type = "beam_search"
print('\n~Validating~\n')
example_input = []
example_output = []
predict_sequence = []
avg_reward = []
# put in test mode!
model.eval()
trainning=False
cur_batch=0
for batch_id, val_batch in enumerate(tqdm(validation_dataloader,
disable=args['disable_progress_bar'])):
bat = Variable(val_batch)
if args['use_cuda']: bat = bat.cuda()
R, probs, actions, action_idxs = model(bat)
cur_batch=cur_batch+1
avg_reward.append(R[0].item())
val_step += 1.
writer.add_scalar('val_reward', R[0].item(), int(val_step))
if val_step % int(args['log_step']) == 0:
example_output = []
example_input = []
for idx, action in enumerate(actions):
# if task[0] == 'tsp':
example_output.append(action_idxs[idx][0].item())
# else:
# example_output.append(action[0].numpy())
example_input.append(bat[0, :, idx].cpu().numpy()) # 尝试item改numpy
# print('Step: {}'.format(batch_id))
predict_sequence.append(example_output)
if args['plot_attention']:
probs = torch.cat(probs, 0)
plot_attention(example_input,
example_output, probs.data.cpu().numpy())
if not args['is_train']:
predict_sequence=np.array(predict_sequence)
np.savetxt(os.path.join(save_dir, 'sequence-{}.csv'.format(i)),predict_sequence,fmt='%d')
np.savetxt(os.path.join(save_dir, 'height-{}.csv'.format(i)),avg_reward,fmt='%.05f')
print('Validation overall avg_reward: {}'.format(np.mean(avg_reward)))
print('Validation overall reward var: {}'.format(np.var(avg_reward)))
#writer.add_scalar('val_avg_reward', np.mean(avg_reward), i)
writer.add_scalar('val_avg_reward', np.mean(avg_reward), xxx)
# with open('rewards_val.csv',"a+") as csvfile:
# csvfile.write(str(i)+' '+str(np.mean(avg_reward).tolist())+' '+str(np.var(avg_reward).tolist())+'\n')
if args['is_train']:
model.actor_net.decoder.decode_type = "stochastic"
print('Saving model...')
torch.save(model, os.path.join(save_dir, 'epoch-{}.pt'.format(i)))
# If the task requires generating new data after each epoch, do that here!
# training_dataset = PolygonsDataset(args['train_size'],args['max_point_num'],path='{}.npy'.format(args['run_name']),full_size=9996)
# training_dataloader = DataLoader(training_dataset, batch_size=int(args['batch_size']),shuffle=False, num_workers=4)
training_dataset.updateRealIndex()
val_dataset.updateRealIndex()