forked from warwickcamdu/PetaKit5DfromSLD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_decon.m
567 lines (431 loc) · 21 KB
/
run_decon.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
% Devonvolves slidebook files (.sld) using PetaKit5D (formely known as
% llsm5dtools), followed by deskewing, and finally saving as .tif files and maximum intensity projections.
% Petakit5d doesn't accept .sld files so firstly the sld files are converted to .tif.
% Requires installing PetaKit5D (not the GUI version) and adding it to the matlab path
% Installation instructions with the required matlab toolboxes are on their github:
% https://github.com/abcucberkeley/PetaKit5D
% Requires a modified Matlab bioformats toolbox to read in .sld files and
% adding it to the Matlab path.
% Possibly requires removing the bioformats that's included with petakit5d?
% This will be available somewhere like the CAMDU github
% Requires a PSF for each channel in .tif format (not .tiff).
% All the .sld files in that folder will be processed with the same PSF.
% Folder containing the .sld files to be processed.
% Don't use "C0" or "C1" in the .sld filenames or anywhere in the pathname,
% otherwise it'll break. Folder path needs to end in \
% TODO: Make it so that if its 2D it skips the series
%inputFolder = 'Z:\Shared243\sbrooks\2024-06-18\to-be-deconvolvednext\';
% inputFolder = 'E:\Scott\Software\petakit5d\test-data\Series0-1_T0-1_twochannels\';
inputFolder = 'E:\David\edge-artefacts\nina\raw\input\';
% inputFolder = 'Z:\Shared243\sbrooks\petakittesting\single_timepoint\';
% inputFolder = 'E:\Scott\Software\petakit5d\test-data\T0-2_twochannels\';
% Name of the PSF files.
% Must be .tif format and placed in the same folder as the .sld files.
% The PSF must have the same slice spacing as the image (e.g. 0.5um).
% The metadata probably needs to be correct for the XYZ pixel spacing (e.g. 0.104 um for XY and 0.5 um for Z).
PSF_C0 = '488_PSF.tif';
PSF_C1 = '560_PSF.tif';
% PSF_C0 = 'PSF_488.tif';
% PSF_C1 = 'PSF_640.tif';
if ~isfile([inputFolder PSF_C0])
error('File does not exist: %s', PSF_C0);
end
if ~isfile([inputFolder PSF_C1])
error('File does not exist: %s', PSF_C1);
end
% z step size
dz = 0.5;
% Options: 'none', 'zero', 'mirror', 'gaussian', 'fixed'
z_edge_padding = 'gaussian'; % Set default or input value
z_padding = 20; % Default value
% Predefine parameters for Gaussian and fixed padding
gaussian_mean = 102.27; % Mean for Gaussian sampling
gaussian_std = 3.17; % Standard deviation for Gaussian sampling
fixed_value = 100; % Value for fixed padding
%disable MIPS after decon, only want them after deskew
% can we output to a different directory to the tifs?
% can we delete the intermediate tifs?
% For 2024a it now uses the GPU, had to update graphics driver for matlab
% to recognise GPU, this takes a lot of pressure off of the
% CPU, The decon is still relatively slow but has low GPU utilisation, if
% we calculate the size of each slice and how much expected GPU we can cut
% up the time points in order to parallelise the process on the GPU, expect
% 10-20x speed up so worth the time
% Choose a deconvolution method. Either 'omw' or the standard matlab richardson lucy 'simplified'.
RLmethod = 'simplified';
% number of iterations for deconvolution. For omw use 2 iterations.
DeconIter = 10;
% Wiener filter parameter for OMW deconvolution method
% alpha parameter should be adjusted based on SNR and data quality.
% typically 0.002 - 0.01 for SNR ~20; 0.02 - 0.1 or higher for SNR ~7
wienerAlpha = 0.05;
% Delete the raw .tif (i.e. the ones that aren't deconvolved or deskewed
deleteRawTif = false;
% Delete the .tif files that are deconvolved but not deskewed
deleteDeconTif = false;
%% Preset Parameters
% Deconvolution parameters
% add the software to the path not working
% setup([]);
% xy pixel size in um. Always 0.104 um for 3i LLSM (different to others)
xyPixelSize = 0.104;
% scan direction
Reverse = true;
% psf z step size (we assume xyPixelSize also apply to psf)
dzPSF = 0.5;
% if true, check whether image is flipped in z using the setting files
parseSettingFile = false;
% channel patterns for the channels, the channel patterns should map the
% order of PSF filenames.
ChannelPatterns = {'Ch0', 'Ch1', ...
};
% psf path
psf_rt = inputFolder;
PSFFullpaths = {
[psf_rt, PSF_C0], ...
[psf_rt, PSF_C1], ...
};
% OTF thresholding parameter
OTFCumThresh = 0.9;
% true if the PSF is in skew space
skewed = true;
% deconvolution result path string (within dataPath)
resultDirName = 'deconvolved';
% background to subtract
Background = 100;
% decon to 80 iterations (not use the criteria for early stop)
fixIter = true;
% erode the edge after decon for number of pixels.
EdgeErosion = 0;
% save as 16bit; if false, save to single
Save16bit = true;
% use zarr file as input; if false, use tiff as input
zarrFile = false;
% save output as zarr file; if false,s ave as tiff
saveZarr = false;
% number of cpu cores
cpusPerTask = 4;
% use cluster computing for different images
parseCluster = false;
% set it to true for large files that cannot be fitted to RAM/GPU, it will
% split the data to chunks for deconvolution
largeFile = false;
% use GPU for deconvolution
GPUJob = true;
% if true, save intermediate results every 5 iterations.
debug = false;
% config file for the master jobs that runs on CPU node
ConfigFile = '';
% config file for the GPU job scheduling on GPU node
GPUConfigFile = '';
% if true, use Matlab runtime (for the situation without matlab license)
mccMode = false;
% Deskew parameters
% also do coverslip correction rotation (usually at Warwick we don't do this)
rotate = false;
% skew angle, this is 32.8 for the 3i LLSM which is different to others
skewAngle = 32.8;
radians = deg2rad(skewAngle);
% Calculate the sine of the angle in radians
sine_value = sin(radians);
% flipZstack, I think we want this true
flipZstack = true;
% not sure this is necessary when we aren't rotating
DSRCombined = false;
% true if input is in Zarr format
zarrFile = false;
% true if saving result as Zarr files
saveZarr = false;
% true if saving result as Uint16
Save16bit = true;
% save intermediate iteration results (only for simplified, not for omw)
saveStep = false;
% use slurm cluster if true, otherwise use the local machine (master job)
parseCluster = false;
% use master job for task computing or not.
masterCompute = true;
% configuration file for job submission
configFile = '';
% if true, use Matlab runtime (for the situation without matlab license)
mccMode = false;
%% Step 1. Convert the .sld files into .tif files
% Find the .sld files in the directory
filePattern = fullfile(inputFolder, '*.sld');
theFiles = dir(filePattern);
% Store total number of sld files to study
nFiles = length(theFiles);
% Iterate through all the .sld files in the directory
for k = 1:nFiles
fprintf(" >> Converting .sld to tif: %3d / %3d\n", k, nFiles);
% Define full file name for current loop iteration
baseFileName = theFiles(k).name;
fullFileName = fullfile(theFiles(k).folder, baseFileName)
r = bfGetReader(fullFileName);
%access the OME metadata and get number of series
omeMeta = r.getMetadataStore();
nSeries = r.getSeriesCount();
%Iterate through series within the file
for S = 0:nSeries-1
%switch between series and load that series
r.setSeries(S);
%r.getSeries();
%get metadata and extract important features
% check X and Y are correct and not switched
omeMeta = r.getMetadataStore();
stackSizeX = omeMeta.getPixelsSizeX(S).getValue(); %image width in pixels
stackSizeY = omeMeta.getPixelsSizeY(S).getValue(); %image height in pixels
stackSizeZ = omeMeta.getPixelsSizeZ(S).getValue(); %number of slices
stackSizeC = omeMeta.getPixelsSizeC(S).getValue(); %number of channels
stackSizeT = omeMeta.getPixelsSizeT(S).getValue(); %number of time points
% Extract physical pixel size (XY spacing)
pixelSizeX = omeMeta.getPixelsPhysicalSizeX(S); % in micrometers
if ~isempty(pixelSizeX)
pixelSizeX = double(pixelSizeX.value());
else
pixelSizeX = NaN;
end
pixelSizeY = omeMeta.getPixelsPhysicalSizeY(S); % in micrometers
if ~isempty(pixelSizeY)
pixelSizeY = double(pixelSizeY.value());
else
pixelSizeY = NaN;
end
% Extract Z spacing
pixelSizeZ = omeMeta.getPixelsPhysicalSizeZ(S); % in micrometers
if ~isempty(pixelSizeZ)
pixelSizeZ = double(pixelSizeZ.value());
else
pixelSizeZ = NaN;
end
deskewedZSpacing = sine_value * pixelSizeZ;
% Extract frame interval
frameInterval = 0;
% % Extract frame interval
% frameInterval = omeMeta.getPixelsTimeIncrement(1); % in seconds
% if ~isempty(frameInterval)
% frameInterval = frameInterval.value();
% else
% frameInterval = NaN;
% end
if stackSizeC == 1
PSFFullpaths = {
[psf_rt, PSF_C0], ...
};
ChannelPatterns = {'Ch0', ...
};
end
% Print extracted values
fprintf('Stack Size (X, Y, Z, C, T): (%d, %d, %d, %d, %d)\n', stackSizeX, stackSizeY, stackSizeZ, stackSizeC, stackSizeT);
fprintf('Pixel Size (X, Y): (%.3f, %.3f) micrometers\n', pixelSizeX, pixelSizeY);
fprintf('Z Spacing: %.2f micrometers\n', pixelSizeZ);
fprintf('Deskewed Z Spacing: %.3f micrometers\n', deskewedZSpacing);
seriesName = char(omeMeta.getImageName(S));
% Take the .sld filename and the series image name and make a new
% folder based on this
seriesFolderName = strrep(baseFileName, ".sld", "");
seriesNameNoSpaces = strrep(seriesName, " ", "_");
currentSeriesFolder = seriesFolderName+'_'+seriesNameNoSpaces;
mkdir(inputFolder,currentSeriesFolder);
currentSeriesPath = fullfile(inputFolder, currentSeriesFolder);
% make a folder to store the .tif files
mkdir(currentSeriesPath,'tifs');
tifDir = currentSeriesPath+ '\'+ 'tifs';
%skip the series if it has only one Z-slice
plane_count = 0;
if stackSizeZ>1
%We need to store all of Z-stacks of this time-point and
%channel in an array to be processed later, so set up and empty array
%and start a count
count = 1;
array = [];
%iterate through all the timepoints
for T = 0:stackSizeT-1
%iterate through all the channels
for C = 0:stackSizeC-1
%iterate through all the z-slices
for Z = 0:stackSizeZ-1
%Use the index to read in the specific plane and
%convert to double
plane = bfGetPlane(r, r.getIndex(Z, C, T) +1);
plane = double(plane);
%Add plane to array at position (count, 1)(in essence
%you are appending the array) and add 1 to count.
%Possibly this step could be improved, there's
%maybe a simpler way to read this without a for
%loop
array(:,:,count) = plane;
count = count+1;
plane_count = plane_count+1;
% this should be first of second timepoint
if plane_count == int32(stackSizeZ*stackSizeC)+1
plane_count
frameInterval = omeMeta.getPlaneDeltaT(S, plane_count).value().doubleValue()/1000; % in seconds
firstframeInterval = omeMeta.getPlaneDeltaT(S, 0).value().doubleValue()/1000; % in seconds
frameInterval = frameInterval - firstframeInterval;
end
end
%prepare the stack array to be saved
outputArray = array(1:stackSizeY, 1:stackSizeX, 1:stackSizeZ);
outputArray = uint16(outputArray);
%prepare the image name
strSld = baseFileName(1:end-4);
strS = num2str(S);
strT = num2str(T);
strT = pad(strT,4,'left','0'); % zero padding
strC = num2str(C);
% Ensure all variables are character arrays
tifDir = char(tifDir);
tifFullpath = [tifDir '\' strSld '_S' strS '_T' strT '_Ch' strC '.tif'];
% Check the padding type and apply accordingly
switch z_edge_padding
case 'none'
% No padding applied
outputArray = outputArray;
case 'zero'
% Apply zero padding
outputArray = padarray(outputArray, [0, 0, z_padding], 0, 'both');
case 'mirror'
% Apply mirror padding
outputArray = padarray(outputArray, [0, 0, z_padding], 'symmetric', 'both');
case 'gaussian'
% Apply Gaussian sampling padding with predefined mean and standard deviation
frontPad = gaussian_mean + gaussian_std .* randn(size(outputArray, 1), size(outputArray, 2), z_padding);
backPad = gaussian_mean + gaussian_std .* randn(size(outputArray, 1), size(outputArray, 2), z_padding);
% Concatenate the Gaussian padding to the original array
outputArray = cat(3, frontPad, outputArray, backPad);
case 'fixed'
% Apply fixed-value padding
frontPad = fixed_value * ones(size(outputArray, 1), size(outputArray, 2), z_padding);
backPad = fixed_value * ones(size(outputArray, 1), size(outputArray, 2), z_padding);
% Concatenate the fixed padding to the original array
outputArray = cat(3, frontPad, outputArray, backPad);
otherwise
error('Invalid z_edge_padding option. Choose ''none'', ''zero'', ''mirror'', ''gaussian'', or ''fixed''.');
end
% Output the result
disp(['New size after padding: ', mat2str(size(outputArray))]);
%save the array as a tif
%I think this doesn't save metadata but that doesn't
%seem to matter for the deconvolution step
parallelWriteTiff(tifFullpath,outputArray);
%clear array for next channel
array = [];
count = 1;
end
%clear array for next timepoint
array = [];
count = 1;
end
end
fprintf('Frame Interval: %.2f seconds\n', frameInterval);
% After we have saved all the individual 3D stacks for each image
% the current metadata will be correct and we can run deconv and
% deskew as we go along then reconstruct into a new 5D image
%% Step 2: Deconvolution
%% Step 2.1: set parameters
% set in top section
%% Step 2.2: run the deconvolution with given parameters.
% the results will be saved in matlab_decon under the dataPaths.
% the next step is deskew/rotate (if in skewed space for x-stage scan) or
% rotate (if objective scan) or other processings.
fprintf('Starting deconvolution...\n\n');
XR_decon_data_wrapper(tifDir, 'resultDirName', resultDirName, 'xyPixelSize', xyPixelSize, ...
'dz', dz, 'Reverse', Reverse, 'ChannelPatterns', ChannelPatterns, 'PSFFullpaths', PSFFullpaths, ...
'dzPSF', dzPSF, 'parseSettingFile', parseSettingFile, 'RLmethod', RLmethod, ...
'wienerAlpha', wienerAlpha, 'OTFCumThresh', OTFCumThresh, 'skewed', skewed, ...
'Background', Background, 'CPPdecon', false, 'CudaDecon', false, 'DeconIter', DeconIter, ...
'fixIter', fixIter, 'EdgeErosion', EdgeErosion, 'Save16bit', Save16bit, ...
'zarrFile', zarrFile, 'saveZarr', saveZarr, 'parseCluster', parseCluster, ...
'largeFile', largeFile, 'GPUJob', GPUJob, 'debug', debug, 'cpusPerTask', cpusPerTask, ...
'ConfigFile', ConfigFile, 'GPUConfigFile', GPUConfigFile, 'mccMode', mccMode);
% release GPU if using GPU computing
if GPUJob && gpuDeviceCount('available') > 0
reset(gpuDevice);
end
%% Step 2.5 Crop the deconvolved output to remove the padding
dataPath_exps = [tifDir '\' resultDirName];
% Get list of .tif files in the folder
fileList = dir(fullfile(dataPath_exps, '*.tif'));
% Check if padding was applied (i.e., padding is not 'none')
if ~strcmp(z_edge_padding, 'none')
for k = 1:length(fileList)
% Construct full file path
filePath = fullfile(dataPath_exps, fileList(k).name);
% Load the image
img = parallelReadTiff(filePath);
% Check if the image has the expected padding size
if size(img, 3) > 2 * z_padding
% Remove the padding from the z-axis
img_no_padding = img(:, :, (z_padding + 1):(end - z_padding));
parallelWriteTiff(filePath,img_no_padding);
else
warning(['Skipping ', fileList(k).name, ': not enough depth for padding removal.']);
end
end
end
%% Step 3: deskew the deconvolved results
XR_deskew_rotate_data_wrapper(dataPath_exps, skewAngle=skewAngle, flipZstack=flipZstack, DSRCombined=DSRCombined, rotate=rotate, xyPixelSize=xyPixelSize, dz=dz, ...
Reverse=Reverse, ChannelPatterns=ChannelPatterns, largeFile=largeFile, ...
zarrFile=zarrFile, saveZarr=saveZarr, Save16bit=Save16bit, parseCluster=parseCluster, ...
masterCompute=masterCompute, configFile=configFile, mccMode=mccMode);
%outputTiffFile = currentSeriesFolder + ".tif";
currentSeriesPath
outputTiffFile = currentSeriesPath + ".tif";
outputTiffPath = fullfile(inputFolder, outputTiffFile);
outputTiffPath
inputToMerge = [dataPath_exps '\' 'DS'];
paraMergeTiffFilesToMultiDimStack(inputToMerge, outputTiffFile,pixelSizeX, deskewedZSpacing, frameInterval);
outputTiffFileMax = currentSeriesPath + "_MAX.tif";
inputToMergeMax = [inputToMerge '\' 'MIPs'];
paraMergeMaxToStack(inputToMergeMax, outputTiffFileMax,pixelSizeX, frameInterval);
end
end
% This was not clear, may need to be added just before the deconvolution
% step
% % move to the PetaKit5D root directory
% curPath = pwd;
% if ~endsWith(curPath, 'PetaKit5D')
% mfilePath = mfilename('fullpath');
% if contains(mfilePath,'LiveEditorEvaluationHelper')
% mfilePath = matlab.desktop.editor.getActiveFilename;
% end
%
% mPath = fileparts(mfilePath);
% if endsWith(mPath, 'demos')
% cd(mPath);
% cd('..')
% end
% end
%% Step 4: delete intermediate .tif files
% deletes the raw tifs if the flag is true
if deleteRawTif == true
% Find the raw .tif files (i.e. not deconvolved, not deskewed)
filePattern = fullfile(tifDir, '*.tif');
theFiles = dir(filePattern);
% Store total number of sld files to study
nFiles = length(theFiles);
% Iterate through all the .sld files in the directory
for k = 1:nFiles
% Define full file name for current loop iteration
baseFileName = theFiles(k).name;
fullFileName = fullfile(theFiles(k).folder, baseFileName);
delete(fullFileName);
end
end
% deletes the .tif files that are deconvolved but not deskewed, if the flag is true
if deleteDeconTif == true
% Path to the deconvolved .tif files
deconTifDir = [tifDir '\' resultDirName];
% Find the raw .tif files (i.e. not deconvolved, not deskewed)
filePattern = fullfile(deconTifDir, '*.tif');
theFiles = dir(filePattern);
% Store total number of sld files to study
nFiles = length(theFiles);
% Iterate through all the .sld files in the directory
for k = 1:nFiles
% Define full file name for current loop iteration
baseFileName = theFiles(k).name;
fullFileName = fullfile(theFiles(k).folder, baseFileName);
delete(fullFileName);
end
end