-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathone_shot.py
555 lines (432 loc) · 21.2 KB
/
one_shot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import argparse
import logging
import os
import sys
import time
from threading import Thread
from utils import ResNet, SetRepresentation, put_new_data, load_data, \
predictive_lb, predictive_ll, lower_bound, likelihood_classification
from classification import one_shot_classification, cos_sim, blackbox_classification
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from matplotlib import gridspec
import scg
parser = argparse.ArgumentParser()
parser.add_argument('--episode', type=int, default=10)
parser.add_argument('--checkpoint', type=str, default=None)
parser.add_argument('--hidden-dim', type=int, default=50)
parser.add_argument('--test', type=int, default=None)
parser.add_argument('--classification', type=int, default=None)
parser.add_argument('--max-classes', type=int, default=2)
parser.add_argument('--test-episodes', type=int, default=1000)
parser.add_argument('--reconstructions', action='store_const', const=True)
parser.add_argument('--generate', type=int, default=None)
parser.add_argument('--test-dataset', type=str, default='data/test_small.npz')
parser.add_argument('--train-dataset', type=str, default='data/train_small.npz')
parser.add_argument('--batch', type=int, default=20)
parser.add_argument('--seed', type=int, default=123)
parser.add_argument('--l2', type=float, default=0.)
parser.add_argument('--prior-hops', type=int, default=1)
parser.add_argument('--hops', type=int, default=1)
parser.add_argument('--shots', type=int, default=1)
parser.add_argument('--likelihood-classification', type=int, default=None)
parser.add_argument('--no-dummy', action='store_const', const=True)
parser.add_argument('--classes', type=str, default=None)
parser.add_argument('--conditional', action='store_const', const=True)
parser.add_argument('--prior-entropy', action='store_const', const=True)
args = parser.parse_args()
tf.set_random_seed(args.seed)
np.random.seed(args.seed)
if args.classification is not None:
args.batch = args.max_classes
args.episode = args.max_classes * args.shots + 1
elif args.likelihood_classification is not None:
args.batch = args.likelihood_classification
args.episode = args.shots + 1
elif args.generate is not None:
args.batch = args.generate
elif args.prior_entropy:
args.batch = 1
if args.classes is not None:
args.classes = np.array(map(int, args.classes.split(' ')))
start_from = 0
if args.conditional is not None:
start_from = args.max_classes
args.no_dummy = True
data_dim = 28*28
episode_length = args.episode
class GenerativeModel:
def __init__(self, hidden_dim, state_dim):
self.hidden_dim = hidden_dim
self.hp = scg.Affine(state_dim, 200, 'prelu', scg.norm_init(scg.he_normal))
self.mu = scg.Affine(200, self.hidden_dim, None, scg.he_normal)
self.pre_sigma = scg.Affine(200, self.hidden_dim, None, scg.he_normal)
self.prior = scg.Normal(self.hidden_dim)
self.h0 = scg.Affine(hidden_dim + state_dim, 3*3*32, fun=None, init=scg.he_normal)
self.h1 = ResNet.section([3, 3, 32], [2, 2], 32, 2, [2, 2], downscale=False)
self.h2 = ResNet.section([6, 6, 32], [3, 3], 16, 2, [3, 3], downscale=False)
self.h3 = ResNet.section([13, 13, 16], [4, 4], 16, 2, [3, 3], downscale=False)
self.conv = scg.Convolution2d([28, 28, 16], [1, 1], 1, padding='VALID',
init=scg.he_normal)
def generate_prior(self, state, hidden_name):
hp = self.hp(input=state)
z = self.prior(name=hidden_name, mu=self.mu(input=hp, name=hidden_name + '_prior_mu'),
pre_sigma=self.pre_sigma(input=hp, name=hidden_name + '_prior_sigma'))
return z
def generate(self, z, param, observed_name):
h = self.h0(input=scg.concat([z, param]))
h = self.h1(h)
h = self.h2(h)
h = self.h3(h)
h = self.conv(input=h, name=observed_name + '_logit')
return scg.Bernoulli()(logit=h, name=observed_name)
class RecognitionModel:
def __init__(self, hidden_dim, state_dim):
self.hidden_dim = hidden_dim
self.init = scg.norm_init(scg.he_normal)
self.h1 = ResNet.section([28, 28, 1], [4, 4], 16, 2, [3, 3])
self.h2 = ResNet.section([13, 13, 16], [3, 3], 32, 2, [3, 3])
self.h3 = ResNet.section([6, 6, 32], [2, 2], 32, 2, [2, 2])
self.features_dim = 3 * 3 * 32 # np.prod(self.h3.shape)
self.mu = scg.Affine(self.features_dim + state_dim, hidden_dim)
self.sigma = scg.Affine(self.features_dim + state_dim, hidden_dim)
def get_features(self, obs):
h = self.h1(obs)
h = self.h2(h)
h = self.h3(h)
return h
def recognize(self, h, param, hidden_name):
h = scg.concat([h, param])
mu = self.mu(input=h, name=hidden_name + '_mu')
sigma = self.sigma(input=h, name=hidden_name + '_sigma')
z = scg.Normal(self.hidden_dim)(mu=mu, pre_sigma=sigma, name=hidden_name)
return z
class VAE(object):
@staticmethod
def hidden_name(step):
return 'z_' + str(step)
@staticmethod
def observed_name(step):
return 'x_' + str(step)
@staticmethod
def params_name(step):
return 'theta_' + str(step)
def __init__(self, input_data, hidden_dim, gen, rec):
state_dim = 200
self.num_steps = args.hops
self.prior_steps = args.prior_hops
self.matching_dim = 200
with tf.variable_scope('recognition') as vs:
self.rec = rec(hidden_dim, state_dim + 288)
self.features_dim = self.rec.features_dim
self._rec_query = scg.Affine(state_dim + self.features_dim, self.matching_dim,
fun=None, init=scg.norm_init(scg.he_normal))
self._rec_strength = scg.Affine(state_dim, 1, init=scg.norm_init(scg.he_normal))
with tf.variable_scope('generation') as vs:
self.gen = gen(hidden_dim, state_dim + self.features_dim)
self._gen_query = scg.Affine(state_dim + hidden_dim, self.matching_dim,
fun=None, init=scg.norm_init(scg.he_normal))
self._gen_strength = scg.Affine(state_dim, 1, init=scg.norm_init(scg.he_normal))
self._prior_query = scg.Affine(state_dim, self.matching_dim, fun=None, init=scg.norm_init(scg.he_normal))
self._prior_strength = scg.Affine(state_dim, 1, init=scg.norm_init(scg.he_normal))
self.prior_repr = SetRepresentation(self.features_dim, self.matching_dim, state_dim)
with tf.variable_scope('both') as vs:
self.set_repr = SetRepresentation(self.features_dim, self.matching_dim, state_dim)
self.z = [None] * episode_length
self.x = [None] * (episode_length+1)
# allocating observations
self.obs = [None] * episode_length
for t in xrange(episode_length):
current_data = input_data[:, t, :]
self.obs[t] = scg.Constant(value=current_data, shape=[28*28])(name=VAE.observed_name(t))
# pre-computing features
self.features = []
for t in xrange(episode_length):
self.features.append(self.rec.get_features(self.obs[t]))
for timestep in xrange(episode_length+1):
dummy = True
if args.no_dummy and timestep > 0:
dummy = False
if timestep < episode_length:
def rec_query(state):
return self._rec_query(input=scg.concat([state, self.features[timestep]]))
def rec_strength(state):
return self._rec_strength(input=state)
rec_response, rec_state = self.set_repr.recognize(self.features, timestep, rec_query,
self.num_steps, strength=rec_strength,
dummy=dummy)
self.z[timestep] = self.rec.recognize(self.features[timestep], scg.concat([rec_response, rec_state]),
VAE.hidden_name(timestep))
self.x[timestep] = self.generate(timestep, dummy=dummy)
def generate(self, timestep, dummy=True):
def prior_query(state):
return self._prior_query(input=state)
def prior_strength(state):
return self._prior_strength(input=state)
prior_response, prior_state = self.prior_repr.recognize(self.features, timestep, prior_query, self.prior_steps,
strength=prior_strength, dummy=dummy)
z_prior = self.gen.generate_prior(scg.concat([prior_response, prior_state]), VAE.hidden_name(timestep))
def gen_query(state):
return self._gen_query(input=scg.concat([state, z_prior]))
def gen_strength(state):
return self._gen_strength(input=state)
gen_response, gen_state = self.set_repr.recognize(self.features, timestep, gen_query,
self.num_steps, strength=gen_strength,
dummy=dummy)
return self.gen.generate(z_prior, scg.concat([gen_response, gen_state]), VAE.observed_name(timestep))
def sample(self, cache=None):
if cache is None:
cache = {}
for i in xrange(episode_length):
time_start = time.time()
self.z[i].backtrace(cache)
self.x[i].backtrace(cache)
print i, time.time() - time_start
return cache
def importance_weights(self, cache):
gen_ll = {}
rec_ll = {}
# w[t][i] -- likelihood ratio for the i-th object after t objects has been seen
w = [0.] * episode_length
for i in xrange(episode_length):
scg.likelihood(self.z[i], cache, rec_ll)
scg.likelihood(self.x[i], cache, gen_ll)
w[i] = gen_ll[VAE.observed_name(i)] + gen_ll[VAE.hidden_name(i)] - rec_ll[VAE.hidden_name(i)]
w = tf.pack(w)
return w, [gen_ll, rec_ll]
data_queue = tf.FIFOQueue(1000, tf.float32, shapes=[episode_length, data_dim])
new_data = tf.placeholder(tf.float32, [None, episode_length, data_dim])
enqueue_op = data_queue.enqueue_many(new_data)
batch_size = args.batch if args.test is None else args.test
input_data = data_queue.dequeue_many(batch_size)
with tf.variable_scope('model'):
vae = VAE(input_data, args.hidden_dim, GenerativeModel, RecognitionModel)
train_samples = vae.sample(None)
weights, ll = vae.importance_weights(train_samples)
def effective_sample_size(gen_ll, rec_ll):
w = []
for t in xrange(episode_length):
w_t = gen_ll[VAE.hidden_name(t)] - rec_ll[VAE.hidden_name(t)]
w.append(w_t)
w = tf.pack(w)
max_w = tf.reduce_max(w, 0)
adjusted_w = w - max_w
exp_w = tf.exp(adjusted_w)
ess = tf.square(tf.reduce_sum(exp_w, 0)) / tf.reduce_sum(tf.square(exp_w), 0)
return ess
def entropy(samples):
result = []
for t in xrange(episode_length):
sigma = tf.nn.softplus(tf.clip_by_value(samples[VAE.hidden_name(t) + '_prior_sigma'], -10., 10.))
h = 0.5 * (1. + np.log(np.pi) + np.log(2.) + 2 * tf.log(sigma))
result.append(tf.reduce_sum(h))
# result.append(tf.reduce_mean(sigma))
return tf.pack(result)
train_pred_lb = predictive_lb(weights)
train_pred_ll = predictive_ll(weights)
prior_entropy = entropy(train_samples)
vlb_gen = lower_bound(weights, start_from)
global_step = tf.Variable(0, trainable=False)
learning_rate = tf.placeholder(tf.float32)
epoch_passed = tf.Variable(0)
increment_passed = epoch_passed.assign_add(1)
reg = 0.
for var in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='model'):
reg += tf.reduce_sum(tf.square(var))
train_objective = -vlb_gen + args.l2 * reg
train_op = tf.train.AdamOptimizer(beta2=0.99, epsilon=1e-8, learning_rate=learning_rate,
use_locking=False).minimize(train_objective, global_step)
saver = tf.train.Saver()
with tf.Session() as sess:
log = logging.getLogger()
log.setLevel(10)
log.addHandler(logging.StreamHandler())
if args.checkpoint is not None:
log.addHandler(logging.FileHandler(args.checkpoint + '.log'))
def data_loop(coordinator=None):
train_data = load_data(args.train_dataset) if not args.reconstructions else load_data(args.test_dataset)
batch = np.zeros((1, episode_length, data_dim))
# test_data = np.load('data/test_small.npz')
while coordinator is None or not coordinator.should_stop():
put_new_data(train_data, batch, args.max_classes, conditional=args.conditional)
sess.run(enqueue_op, feed_dict={new_data: batch})
coord = tf.train.Coordinator()
if args.checkpoint is not None and os.path.exists(args.checkpoint):
print 'checkpoint found, restoring'
saver.restore(sess, args.checkpoint)
else:
print 'starting from scratch'
sess.run(tf.initialize_all_variables())
data_threads = [Thread(target=data_loop, args=[coord]) for i in xrange(1)]
if args.test is None and args.generate is None and args.classification is None and args.likelihood_classification is None:
for t in data_threads:
t.start()
def test(full=False):
test_data = load_data(args.test_dataset)
avg_predictive_ll = np.zeros(episode_length)
batch_data = np.zeros((batch_size, episode_length, data_dim), dtype=np.float32)
target = train_pred_lb if not full else train_pred_ll
if args.prior_entropy:
target = prior_entropy
for j in xrange(args.test_episodes):
if full:
put_new_data(test_data, batch_data[:1, :, :], args.max_classes, conditional=args.conditional)
for t in xrange(1, batch_data.shape[0]):
batch_data[t] = batch_data[0]
else:
put_new_data(test_data, batch_data[:, :, :], args.max_classes, conditional=args.conditional)
pred_ll = sess.run(target, feed_dict={input_data: batch_data})
avg_predictive_ll += (pred_ll - avg_predictive_ll) / (j+1)
msg = '\rtesting %d' % j
if args.prior_entropy:
msg = '\rentropy %d' % j
for t in xrange(episode_length):
msg += ' %.2f' % avg_predictive_ll[t]
sys.stdout.write(msg)
if j == args.test_episodes-1:
print
log.info(msg)
num_epochs = 0
done_epochs = epoch_passed.eval(sess)
if args.test is not None:
test(full=True)
coord.request_stop()
# coord.join(data_threads)
sys.exit()
elif args.reconstructions:
reconstructions = [None] * episode_length
for i in xrange(episode_length):
reconstructions[i] = tf.sigmoid(train_samples[VAE.observed_name(i) + '_logit'][0, :])
reconstructions = tf.pack(reconstructions)
original_input = input_data[0, :, :]
while True:
sample, original = sess.run([reconstructions, original_input])
plt.matshow(np.hstack([sample.reshape(28 * episode_length, 28),
original.reshape(28 * episode_length, 28)]),
cmap=plt.get_cmap('Greys'))
plt.show()
plt.close()
coord.request_stop()
# coord.join(data_threads)
sys.exit()
elif args.generate is not None:
train_samples.clear()
for t in xrange(episode_length+1):
if t < episode_length:
train_samples[VAE.observed_name(t)] = input_data[:, t, :]
obs = vae.generate(t, False if args.no_dummy and t > 0 else True)
obs.backtrace(train_samples, batch=batch_size)
data = load_data(args.test_dataset)
input_batch = np.zeros([batch_size, episode_length, data_dim])
logits = []
for t in xrange(episode_length+1):
logits.append(tf.sigmoid(train_samples[VAE.observed_name(t) + '_logit']))
logits = tf.pack(logits)
while True:
classes = put_new_data(data, input_batch[:1], args.max_classes,
classes=args.classes, conditional=args.conditional)
print 'generating classes ', classes
for j in xrange(1, input_batch.shape[0]):
input_batch[j] = input_batch[0]
# gs = gridspec.GridSpec(episode_length+1, args.generate + 1)
f, axs = plt.subplots(episode_length+1, args.generate + 1,
sharey=True, sharex=True, squeeze=True,
figsize=(8, 8))
axs[0, 0].matshow(np.zeros([28, 28]), cmap=plt.get_cmap('gray'))
for t in xrange(episode_length):
axs[t+1, 0].matshow(input_batch[0, t, :].reshape(28, 28),
cmap=plt.get_cmap('gray'))
img = sess.run(logits, feed_dict={input_data: input_batch})
for t in xrange(episode_length+1):
for k in xrange(batch_size):
if args.conditional and t <= args.max_classes:
axs[t, k+1].matshow(np.zeros([28, 28]), cmap=plt.get_cmap('gray'))
else:
sample = img[t, k].reshape(28, 28)
axs[t, k+1].matshow(sample, cmap=plt.get_cmap('Greys'))
for ax_row in axs:
for ax in ax_row:
ax.set_yticklabels(())
ax.set_xticklabels(())
ax.title.set_visible(False)
plt.subplots_adjust(wspace=0, hspace=0)
ax.axis('tight')
ax.axis('off')
plt.savefig('samples.pdf', bbox_inches='tight', pad_inches=0.)
plt.show()
plt.close()
coord.request_stop()
# coord.join(data_threads)
sys.exit()
elif args.classification is not None:
mu = []
for t in xrange(episode_length):
mu.append(train_samples[VAE.hidden_name(t) + '_mu'])
mu = tf.squeeze(tf.pack(mu))
sim = np.zeros([args.max_classes, episode_length - 1])
def raw_similarities(batch):
features = np.vstack([batch[:, -1, :], batch[0, :-1, :]])
sim = cos_sim(features)
return sim[:, args.max_classes:]
def compute_similarities(batch):
batch_mu = sess.run(mu, feed_dict={input_data: batch})
train_mu = batch_mu[:-1, 0, :]
test_mu = batch_mu[-1, :, :]
batch_mu = np.vstack([test_mu, train_mu])
# for k in xrange(args.max_classes):
# for j in xrange(train_mu.shape[0]):
# sim[k, j] = np.exp(-np.square(np.linalg.norm(test_mu[k] - train_mu[j])) / 3.)
# return sim
sim = cos_sim(batch_mu)
return sim[:, args.max_classes:]
test_data = load_data(args.test_dataset)
accuracy = one_shot_classification(test_data, args.shots, args.max_classes,
compute_similarities, k_neighbours=args.classification,
num_episodes=args.test_episodes)
print
log.info('accuracy: %f' % accuracy)
coord.request_stop()
# coord.join(data_threads)
sys.exit()
elif args.likelihood_classification is not None:
test_data = load_data(args.test_dataset)
# prediction = likelihood_classification(weights[-1], args.max_classes,
# args.likelihood_classification)
prediction = train_pred_ll[-1]
def classify(batch):
return sess.run(prediction, feed_dict={input_data: batch})
accuracy = blackbox_classification(test_data, args.shots, args.max_classes,
classify, args.test_episodes, args.likelihood_classification)
print
log.info('accuracy: %f' % accuracy)
sys.exit()
avg_pred_lb = np.zeros(episode_length)
for epochs, lr in zip([250, 250, 250], [1e-3, 3e-4, 1e-4]):
for epoch in xrange(epochs):
if num_epochs < done_epochs:
num_epochs += 1
continue
epoch_started = time.time()
total_batches = 24345 / batch_size / 10 # episode_length
for batch in xrange(total_batches):
pred_lb, i, _ = sess.run([train_pred_lb, global_step, train_op],
feed_dict={learning_rate: lr})
msg = '\repoch {0}, batch {1} '.format(epoch, i)
avg_pred_lb += 0.01 * (pred_lb - avg_pred_lb)
for t in xrange(episode_length):
assert not np.isnan(pred_lb[t])
msg += ' %.2f' % avg_pred_lb[t]
sys.stdout.write(msg)
sys.stdout.flush()
if batch == total_batches-1:
print
log.info(msg)
log.debug('time for epoch: %f', (time.time() - epoch_started))
sess.run(increment_passed)
if epoch % 30 == 0 and args.checkpoint is not None:
saver.save(sess, args.checkpoint)
if epoch % 20 == 0 and epoch > 0:
test()
coord.request_stop()
# coord.join(data_threads)