-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_datasets_spark.py
445 lines (355 loc) · 17.5 KB
/
make_datasets_spark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import argparse
import datetime
import logging
import os
import pickle
from random import Random
import numpy as np
import pandas as pd
import pyspark.sql.functions as F
import pyspark.sql.types as T
from pyspark.sql import SparkSession
from pyspark.sql import Window
logger = logging.getLogger(__name__)
class DatasetConverter:
def __init__(self):
self.config = None
def parse_args(self, args=None):
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=os.path.abspath)
parser.add_argument('--trx_files', nargs='+')
parser.add_argument('--target_files', nargs='*', default=[])
parser.add_argument('--print_dataset_info', action='store_true')
parser.add_argument('--col_client_id', type=str)
parser.add_argument('--cols_event_time', nargs='+')
parser.add_argument('--dict', nargs='*', default=[])
parser.add_argument('--cols_category', nargs='*', default=[])
parser.add_argument('--cols_log_norm', nargs='*', default=[])
parser.add_argument('--col_target', nargs='*', default=[])
parser.add_argument('--test_size', default='0.1')
parser.add_argument('--salt', type=int, default=42)
parser.add_argument('--max_trx_count', type=int, default=5000)
parser.add_argument('--output_train_path', type=os.path.abspath)
parser.add_argument('--output_test_path', type=os.path.abspath)
parser.add_argument('--output_test_ids_path', type=os.path.abspath)
parser.add_argument('--log_file', type=os.path.abspath)
args = parser.parse_args(args)
logger.info('Parsed args:\n' + '\n'.join([f' {k:15}: {v}' for k, v in vars(args).items()]))
self.config = args
def spark_read_file(self, path):
spark = SparkSession.builder.getOrCreate()
ext = os.path.splitext(path)[1]
if ext == '.csv':
return spark.read.csv(path, header=True)
elif ext == '.parquet':
return spark.read.parquet(path)
else:
raise AttributeError(f'Unknown extension "{ext}" for "{path}"')
def path_to_file(self, file_name):
return os.path.join(self.config.data_path, file_name)
def load_source_data(self, trx_files):
"""
:param trx_files:
:return: spark.DataFrame with `event_time` column of float type
"""
data = None
for file in trx_files:
file_path = self.path_to_file(file)
df = self.spark_read_file(file_path)
data = df if data is None else data.union(df)
logger.info(f'Loaded {df.count()} rows from "{file_path}"')
cnt = data.count()
logger.info(f'Loaded {cnt} rows in total')
cnt_in_partition = 100000
data = data.repartition((cnt + cnt_in_partition - 1) // cnt_in_partition)
return data
def pd_hist(self, df, name, bins=10):
data = df.select(name).toPandas()[name]
if data.dtype.kind == 'f':
bins = np.linspace(data.min(), data.max(), bins + 1).round(1)
elif np.percentile(data, 99) - data.min() > bins - 1:
bins = np.linspace(data.min(), np.percentile(data, 99), bins).astype(int).tolist() + [int(data.max() + 1)]
else:
bins = np.arange(data.min(), data.max() + 2, 1).astype(int)
df = pd.cut(data, bins, right=False).rename(name)
df = df.to_frame().assign(cnt=1).groupby(name)[['cnt']].sum()
df['% of total'] = df['cnt'] / df['cnt'].sum()
return df
def get_encoder(self, df, col_name):
df = df.withColumn(col_name, F.coalesce(F.col(col_name).cast('string'), F.lit('#EMPTY')))
col_orig = '_orig_' + col_name
df = df.withColumnRenamed(col_name, col_orig)
df_encoder = df.groupby(col_orig).agg(F.count(F.lit(1)).alias('_cnt'))
df_encoder = df_encoder.withColumn(col_name,
F.row_number().over(Window.partitionBy().orderBy(F.col('_cnt').desc())))
df_encoder = df_encoder.withColumn(col_name, F.col(col_name))
df_encoder = df_encoder.drop('_cnt')
df_encoder = df_encoder.repartition(1)
df_encoder.persist()
_ = df_encoder.count()
return df_encoder
def encode_col(self, df, col_name, df_encoder):
df = df.withColumn(col_name, F.coalesce(F.col(col_name).cast('string'), F.lit('#EMPTY')))
col_orig = '_orig_' + col_name
df = df.withColumnRenamed(col_name, col_orig)
df = df.join(df_encoder, on=col_orig, how='left')
df = df.withColumn(col_name, F.coalesce(F.col(col_name), F.lit(1)))
df = df.drop(col_orig)
return df
def log_transform(self, df, col_name):
df = df.withColumn(col_name, F.coalesce(F.col(col_name), F.lit(0)))
df = df.withColumn(col_name, F.signum(F.col(col_name)) * F.log(F.abs(F.col(col_name)) + F.lit(1)))
return df
def _td_default(self, df, cols_event_time):
raise NotImplementedError()
def _td_float(self, df, col_event_time):
df = df.withColumn('event_time', F.col(col_event_time).astype('float'))
logger.info('To-float time transformation')
return df
def _td_datetime(self, df, col_event_time):
df = df.withColumn('event_time', F.unix_timestamp(F.col(col_event_time)) / F.lit(24 * 60 * 60))
logger.info('Datetime-to-unix-timestamp time transformation')
return df
def _td_gender(self, df, col_event_time):
"""Gender-dataset-like transformation
'd hh:mm:ss' -> float where integer part is day number and fractional part is seconds from day begin
'1 00:00:00' -> 1.0
'1 12:00:00' -> 1.5
'1 01:00:00' -> 1 + 1 / 24
'2 23:59:59' -> 1.99
'432 12:00:00' -> 432.5
:param df:
:param col_event_time:
:return:
"""
df = df.withColumn('_et_day', F.substring(F.lpad(F.col(col_event_time), 15, '0'), 1, 6).cast('float'))
df = df.withColumn('_et_time', F.substring(F.lpad(F.col(col_event_time), 15, '0'), 8, 8))
df = df.withColumn('_et_time', F.regexp_replace('_et_time', r'\:60$', ':59'))
df = df.withColumn('_et_time', F.unix_timestamp('_et_time', 'HH:mm:ss') / (24 * 60 * 60))
df = df.withColumn('event_time', F.col('_et_day') + F.col('_et_time'))
df = df.drop('_et_day', '_et_time')
logger.info('Gender-dataset-like time transformation')
return df
def remove_long_trx(self, df, max_trx_count, col_client_id):
df = df.withColumn('_cn', F.count(F.lit(1)).over(Window.partitionBy(col_client_id)))
df = df.withColumn('_rn', F.row_number().over(
Window.partitionBy(col_client_id).orderBy(F.col('event_time').desc())))
df = df.filter(F.col('_rn') <= max_trx_count)
df = df.drop('_cn')
df = df.drop('_rn')
return df
def collect_lists(self, df, col_id):
col_list = [col for col in df.columns if col != col_id]
df = df \
.withColumn('trx_count', F.count(F.lit(1)).over(Window.partitionBy(col_id))) \
.withColumn('_rn', F.row_number().over(Window.partitionBy(col_id).orderBy('event_time')))
for col in col_list:
df = df.withColumn(col, F.collect_list(col).over(Window.partitionBy(col_id).orderBy('_rn'))) \
df = df.filter('_rn = trx_count').drop('_rn')
return df
def join_dict(self, df, df_dict_name, col_id):
path = self.path_to_file(df_dict_name)
df_dict = self.spark_read_file(path)
df = df.join(df_dict, on=col_id, how='left')
col_counter = 0
for col in df_dict.columns:
if col == col_id:
continue
col_counter += 1
logger.info(f'Join with "{path}" done. New {col_counter} columns joined')
return df
def trx_to_features(self, df_data, print_dataset_info,
col_client_id, cols_event_time, cols_category, cols_log_norm, max_trx_count):
if print_dataset_info:
unique_clients = df_data.select(col_client_id).distinct().count()
logger.info(f'Found {unique_clients} unique clients')
for col in cols_log_norm:
df_data = self.log_transform(df_data, col)
if print_dataset_info:
logger.info(f'Encoder stat for "{col}":\ncodes | trx_count\n{self.pd_hist(df_data, col)}')
encoders = {col: self.get_encoder(df_data, col) for col in cols_category}
for col in cols_category:
df_data = self.encode_col(df_data, col, encoders[col])
if print_dataset_info:
logger.info(f'Encoder stat for "{col}":\ncodes | trx_count\n{self.pd_hist(df_data, col)}')
if print_dataset_info:
df = df_data.groupby(col_client_id).agg(F.count(F.lit(1)).alias("trx_count"))
logger.info(f'Trx count per clients:\nlen(trx_list) | client_count\n{self.pd_hist(df, "trx_count")}')
# column filter
used_columns = [col for col in df_data.columns
if col in cols_category + cols_log_norm + ['event_time', col_client_id]]
logger.info('Feature collection in progress ...')
features = df_data.select(used_columns)
features = self.remove_long_trx(features, max_trx_count, col_client_id)
features = self.collect_lists(features, col_client_id)
if print_dataset_info:
feature_names = list(features.columns)
logger.info(f'Feature names: {feature_names}')
features.persist()
logger.info(f'Prepared features for {features.count()} clients')
return features
def update_with_target(self, features, df_target, col_client_id, col_target):
if type(col_target) is list:
col_list = []
for col in col_target:
col_list.append(F.col(col))
df_target = df_target.withColumn("target", F.array(col_list))
df_target = df_target.select(col_client_id, "target")
else:
col_list = [F.col(col_client_id).alias(col_client_id)]
col_list.append(F.col(col_target).cast('int').alias('target'))
df_target = df_target.select(*col_list)
df_target = df_target.repartition(1)
features = features.join(df_target, on=col_client_id, how='left')
features.persist()
logger.info(f'Target updated for {features.count()} clients')
return features
def split_dataset(self, all_data, test_size, df_target, col_client_id, salt):
spark = SparkSession.builder.getOrCreate()
s_clients = set(cl[0] for cl in df_target.select(col_client_id).distinct().collect())
# shuffle client list
s_all_data_clients = set(cl[0] for cl in all_data.select(col_client_id).distinct().collect())
s_clients = (cl_id for cl_id in s_clients if cl_id in s_all_data_clients)
s_clients = sorted(s_clients)
s_clients = [cl_id for cl_id in s_clients]
Random(salt).shuffle(s_clients)
# split client list
Nrows_test = int(len(s_clients) * test_size)
s_clients_train = s_clients[:-Nrows_test]
s_clients_test = s_clients[-Nrows_test:]
s_clients_train = spark.createDataFrame([(i,) for i in s_clients_train], [col_client_id]).repartition(1)
s_clients_test = spark.createDataFrame([(i,) for i in s_clients_test], [col_client_id]).repartition(1)
s_clients = spark.createDataFrame([(i,) for i in s_clients], [col_client_id]).repartition(1)
# split data
labeled_train = all_data.join(s_clients_train, on=col_client_id, how='inner')
labeled_test = all_data.join(s_clients_test, on=col_client_id, how='inner')
unlabeled = all_data.join(s_clients, on=col_client_id, how='left_anti')
train = labeled_train.union(unlabeled)
test = labeled_test
logger.info(f'Train size: {train.count()} clients')
logger.info(f'Test size: {test.count()} clients')
return train, test
def split_dataset_predefined(
self,
all_data,
data_path,
col_client_id,
test_ids_path,
):
df_test = self.load_source_data([test_ids_path])
df_test = df_test.withColumn('_is_test', F.lit(1))
all_data = all_data.join(df_test, on=col_client_id, how='left')
all_data = all_data.withColumn('_is_test', F.coalesce(F.col('_is_test'), F.lit(0)))
train = all_data.filter("_is_test = 0")
test = all_data.filter("_is_test = 1")
return train, test
def save_features(self, df_data, save_path):
df_data.write.parquet(save_path, mode='overwrite')
logger.info(f'Saved to: "{save_path}"')
def run(self):
_start = datetime.datetime.now()
self.parse_args()
spark = SparkSession.builder.getOrCreate()
self.logging_config()
# description
spark.sparkContext.setLocalProperty('callSite.short', 'load_source_data')
source_data = self.load_transactions()
# description
spark.sparkContext.setLocalProperty('callSite.short', 'trx_to_features')
client_features = self.trx_to_features(
df_data=source_data,
print_dataset_info=self.config.print_dataset_info,
col_client_id=self.config.col_client_id,
cols_event_time=self.config.cols_event_time,
cols_category=self.config.cols_category,
cols_log_norm=self.config.cols_log_norm,
max_trx_count=self.config.max_trx_count,
)
if len(self.config.target_files) > 0 and len(self.config.col_target) > 0:
# load target
df_target = self.load_target()
df_target.persist()
if len(self.config.col_target) == 1:
col_target = self.config.col_target[0]
else:
col_target = self.config.col_target
# description
spark.sparkContext.setLocalProperty('callSite.short', 'update_with_target')
client_features = self.update_with_target(
features=client_features,
df_target=df_target,
col_client_id=self.config.col_client_id,
col_target=col_target,
)
train, test, save_test_id = None, None, False
if self.config.test_size == 'predefined':
train, test = self.split_dataset_predefined(
all_data=client_features,
data_path=self.config.data_path,
col_client_id=self.config.col_client_id,
test_ids_path=self.config.output_test_ids_path,
)
elif float(self.config.test_size) > 0:
# description
spark.sparkContext.setLocalProperty('callSite.short', 'split_dataset')
train, test = self.split_dataset(
all_data=client_features,
test_size=float(self.config.test_size),
df_target=df_target,
col_client_id=self.config.col_client_id,
salt=self.config.salt,
)
save_test_id = True
else:
train = client_features
# description
spark.sparkContext.setLocalProperty('callSite.short', 'save_features')
self.save_features(
df_data=train,
save_path=self.config.output_train_path,
)
if test is not None:
self.save_features(
df_data=test,
save_path=self.config.output_test_path,
)
if save_test_id:
test_ids = test.select(self.config.col_client_id).toPandas()
test_ids.to_csv(self.config.output_test_ids_path, index=False)
_duration = datetime.datetime.now() - _start
logger.info(f'Data collected in {_duration.seconds} sec ({_duration})')
def load_target(self):
df_target = self.load_source_data(self.config.target_files)
return df_target
def logging_config(self):
if self.config.log_file is not None:
handlers = [logging.StreamHandler(), logging.FileHandler(self.config.log_file, mode='w')]
else:
handlers = None
logging.basicConfig(level=logging.INFO, format='%(funcName)-20s : %(message)s', handlers=handlers)
def load_transactions(self):
spark = SparkSession.builder.getOrCreate()
source_data = self.load_source_data(trx_files=self.config.trx_files)
if len(self.config.dict) > 0:
if len(self.config.dict) % 2 != 0:
raise AttributeError('--dict should be in format (file_name col_id)*')
for i in range(len(self.config.dict) // 2):
# description
spark.sparkContext.setLocalProperty('callSite.short', f'join with {i}th dict')
source_data = self.join_dict(source_data, self.config.dict[2 * i], self.config.dict[2 * i + 1])
# event_time mapping
cols_event_time = self.config.cols_event_time
if cols_event_time[0][0] == '#':
if cols_event_time[0] == '#float':
source_data = self._td_float(source_data, cols_event_time[1])
elif cols_event_time[0] == '#datetime':
source_data = self._td_datetime(source_data, cols_event_time[1])
elif cols_event_time[0] == '#gender':
source_data = self._td_gender(source_data, cols_event_time[1])
else:
raise NotImplementedError(f'Unknown type of data transformation: "{cols_event_time[0]}"')
else:
source_data = self._td_default(source_data, cols_event_time)
return source_data
if __name__ == '__main__':
DatasetConverter().run()