-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_datasets.py
272 lines (218 loc) · 9.9 KB
/
make_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import argparse
import datetime
import logging
import os
import pickle
from random import Random
import numpy as np
import pandas as pd
logger = logging.getLogger(__name__)
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=os.path.abspath)
parser.add_argument('--trx_files', nargs='+')
parser.add_argument('--target_files', nargs='*', default=[])
parser.add_argument('--print_dataset_info', action='store_true', default=True)
parser.add_argument('--col_client_id', type=str)
parser.add_argument('--cols_event_time', nargs='+')
parser.add_argument('--cols_category', nargs='*', default=[])
parser.add_argument('--cols_log_norm', nargs='*', default=[])
parser.add_argument('--col_target', required=False, type=str)
parser.add_argument('--test_size', type=float, default=0.1)
parser.add_argument('--salt', type=int, default=42)
parser.add_argument('--output_train_path', type=os.path.abspath)
parser.add_argument('--output_test_path', type=os.path.abspath)
parser.add_argument('--output_test_ids_path', type=os.path.abspath)
parser.add_argument('--log_file', type=os.path.abspath)
args = parser.parse_args(args)
logger.info('Parsed args:\n' + '\n'.join([f' {k:15}: {v}' for k, v in vars(args).items()]))
return args
def load_source_data(data_path, trx_files):
data = []
for file in trx_files:
file_path = os.path.join(data_path, file)
df = pd.read_csv(file_path)
data.append(df)
logger.info(f'Loaded {len(df)} rows from "{file_path}"')
data = pd.concat(data, axis=0)
logger.info(f'Loaded {len(data)} rows in total')
return data
def pd_hist(data, name, bins=10):
if data.dtype.kind == 'f':
bins = np.linspace(data.min(), data.max(), bins + 1).round(1)
elif np.percentile(data, 99) - data.min() > bins - 1:
bins = np.linspace(data.min(), np.percentile(data, 99), bins).astype(int).tolist() + [int(data.max() + 1)]
else:
bins = np.arange(data.min(), data.max() + 2, 1).astype(int)
df = pd.cut(data, bins, right=False).rename(name)
df = df.to_frame().assign(cnt=1).groupby(name)[['cnt']].sum()
df['% of total'] = df['cnt'] / df['cnt'].sum()
return df
def encode_col(col):
col = col.astype(str)
return col.map({k: i + 1 for i, k in enumerate(col.value_counts().index)})
def trx_to_features(df_data, print_dataset_info,
col_client_id, cols_event_time, cols_category, cols_log_norm):
def copy_time(rec):
rec['event_time'] = rec['feature_arrays']['event_time']
del rec['feature_arrays']['event_time']
return rec
def _td_default(df, cols_event_time):
df_event_time = df[cols_event_time].drop_duplicates()
df_event_time = df_event_time.sort_values(cols_event_time)
df_event_time['event_time'] = np.arange(len(df_event_time))
df = pd.merge(df, df_event_time, on=cols_event_time)
logger.info('Default time transformation')
return df
def _td_float(df, col_event_time):
df['event_time'] = df[col_event_time].astype(float)
logger.info('To-float time transformation')
return df
def _td_gender(df, col_event_time):
"""Gender-dataset-like transformation
'd hh:mm:ss' -> float where integer part is day number and fractional part is seconds from day begin
'1 00:00:00' -> 1.0
'1 12:00:00' -> 1.5
'1 01:00:00' -> 1 + 1 / 24
'2 23:59:59' -> 1.99
'432 12:00:00' -> 432.5
:param df:
:param col_event_time:
:return:
"""
padded_time = df[col_event_time].str.pad(15, 'left', '0')
day_part = padded_time.str[:6].astype(float)
time_part = pd.to_datetime(padded_time.str[7:], format='%H:%M:%S').values.astype(int) // 1e9
time_part = time_part % (24 * 60 * 60) / (24 * 60 * 60)
df['event_time'] = day_part + time_part
logger.info('Gender-dataset-like time transformation')
return df
if print_dataset_info:
logger.info(f'Found {df_data[col_client_id].nunique()} unique clients')
# event_time mapping
if cols_event_time[0][0] == '#':
if cols_event_time[0] == '#float':
df_data = _td_float(df_data, cols_event_time[1])
elif cols_event_time[0] == '#gender':
df_data = _td_gender(df_data, cols_event_time[1])
else:
raise NotImplementedError(f'Unknown type of data transformation: "{cols_event_time[0]}"')
else:
df_data = _td_default(df_data, cols_event_time)
for col in cols_category:
df_data[col] = encode_col(df_data[col])
if print_dataset_info:
logger.info(f'Encoder stat for "{col}":\ncodes | trx_count\n{pd_hist(df_data[col], col)}')
for col in cols_log_norm:
df_data[col] = np.log1p(abs(df_data[col])) * np.sign(df_data[col])
df_data[col] /= abs(df_data[col]).max()
if print_dataset_info:
logger.info(f'Encoder stat for "{col}":\ncodes | trx_count\n{pd_hist(df_data[col], col)}')
if print_dataset_info:
df = df_data.groupby(col_client_id)['event_time'].count()
logger.info(f'Trx count per clients:\nlen(trx_list) | client_count\n{pd_hist(df, "trx_count")}')
# column filter
used_columns = [col for col in df_data.columns
if col in cols_category + cols_log_norm + ['event_time', col_client_id]]
logger.info('Feature collection in progress ...')
features = df_data[used_columns] \
.assign(et_index=lambda x: x['event_time']) \
.set_index([col_client_id, 'et_index']).sort_index() \
.groupby(col_client_id).apply(lambda x: {k: np.array(v) for k, v in x.to_dict(orient='list').items()}) \
.rename('feature_arrays').reset_index().to_dict(orient='records')
features = [copy_time(r) for r in features]
if print_dataset_info:
feature_names = list(features[0]['feature_arrays'].keys())
logger.info(f'Feature names: {feature_names}')
logger.info(f'Prepared features for {len(features)} clients')
return features
def update_with_target(features, data_path, target_files, col_client_id, col_target):
df_target = pd.concat([pd.read_csv(os.path.join(data_path, file)) for file in target_files])
df_target = df_target.set_index(col_client_id)
d_clients = df_target.to_dict(orient='index')
logger.info(f'Target loaded for {len(d_clients)} clients')
features = [
dict([('target', d_clients.get(rec[col_client_id], {}).get(col_target))] + list(rec.items()))
for rec in features
]
logger.info(f'Target updated for {len(features)} clients')
return features
def split_dataset(all_data, test_size, data_path, target_files, col_client_id, salt):
df_target = pd.concat([pd.read_csv(os.path.join(data_path, file)) for file in target_files])
s_clients = set(df_target[col_client_id].tolist())
# shuffle client list
s_all_data_clients = set(rec[col_client_id] for rec in all_data)
s_clients = (cl_id for cl_id in s_clients if cl_id in s_all_data_clients)
s_clients = sorted(s_clients)
s_clients = [cl_id for cl_id in s_clients]
Random(salt).shuffle(s_clients)
# split client list
Nrows_test = int(len(s_clients) * test_size)
s_clients_train = s_clients[:-Nrows_test]
s_clients_test = s_clients[-Nrows_test:]
# split data
labeled_train = [rec for rec in all_data if rec[col_client_id] in s_clients_train]
labeled_test = [rec for rec in all_data if rec[col_client_id] in s_clients_test]
unlabeled = [rec for rec in all_data if rec[col_client_id] not in s_clients]
train = labeled_train + unlabeled
test = labeled_test
logger.info(f'Train size: {len(train)} clients')
logger.info(f'Test size: {len(test)} clients')
return train, test
def save_features(df_data, save_path):
with open(save_path, 'wb') as f:
pickle.dump(df_data, f)
logger.info(f'Saved to: "{save_path}"')
if __name__ == '__main__':
_start = datetime.datetime.now()
config = parse_args()
if config.log_file is not None:
handlers = [logging.StreamHandler(), logging.FileHandler(config.log_file, mode='w')]
else:
handlers = None
logging.basicConfig(level=logging.INFO, format='%(funcName)-20s : %(message)s',
handlers=handlers)
source_data = load_source_data(
data_path=config.data_path,
trx_files=config.trx_files,
)
client_features = trx_to_features(
df_data=source_data,
print_dataset_info=config.print_dataset_info,
col_client_id=config.col_client_id,
cols_event_time=config.cols_event_time,
cols_category=config.cols_category,
cols_log_norm=config.cols_log_norm,
)
if len(config.target_files) > 0 and config.col_target is not None:
client_features = update_with_target(
features=client_features,
data_path=config.data_path,
target_files=config.target_files,
col_client_id=config.col_client_id,
col_target=config.col_target,
)
if config.test_size > 0:
train, test = split_dataset(
all_data=client_features,
test_size=config.test_size,
data_path=config.data_path,
target_files=config.target_files,
col_client_id=config.col_client_id,
salt=config.salt,
)
else:
train = client_features
save_features(
df_data=train,
save_path=config.output_train_path,
)
if config.test_size > 0:
save_features(
df_data=test,
save_path=config.output_test_path,
)
test_ids = pd.DataFrame({config.col_client_id: [rec[config.col_client_id] for rec in test]})
test_ids.to_csv(config.output_test_ids_path, index=False)
_duration = datetime.datetime.now() - _start
logger.info(f'Data collected in {_duration.seconds} sec ({_duration})')