-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathrun_eval.py
443 lines (370 loc) · 15 KB
/
run_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# Copyright 2022 Google LLC.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Modified from https://github.com/google-research/maxim/blob/main/maxim/run_eval.py"""
import os
import numpy as np
import tensorflow as tf
from absl import app, flags
from PIL import Image
from create_maxim_model import Model
from maxim.configs import MAXIM_CONFIGS
FLAGS = flags.FLAGS
flags.DEFINE_enum(
"task",
"Denoising",
["Denoising", "Deblurring", "Deraining", "Dehazing", "Enhancement"],
"Task to run.",
)
flags.DEFINE_string("ckpt_path", "", "Path to checkpoint.")
flags.DEFINE_boolean("dynamic_resize", False, "Whether to allow dynamic resizing.")
flags.DEFINE_string("input_dir", "", "Input dir to the test set.")
flags.DEFINE_string("output_dir", "", "Output dir to store predicted images.")
flags.DEFINE_boolean("has_target", True, "Whether has corresponding gt image.")
flags.DEFINE_boolean("save_images", True, "Dump predicted images.")
flags.DEFINE_boolean("geometric_ensemble", False, "Whether use ensemble infernce.")
_MODEL_VARIANT_DICT = {
"Denoising": "S-3",
"Deblurring": "S-3",
"Deraining": "S-2",
"Dehazing": "S-2",
"Enhancement": "S-2",
}
_IMG_SIZE = 256
_VALID_IMG_EXT = ["jpeg", "jpg", "png", "gif"]
def mod_padding_symmetric(image, factor=64):
"""Padding the image to be divided by factor."""
height, width = image.shape[0], image.shape[1]
height_pad, width_pad = ((height + factor) // factor) * factor, (
(width + factor) // factor
) * factor
padh = height_pad - height if height % factor != 0 else 0
padw = width_pad - width if width % factor != 0 else 0
image = tf.pad(
image, [(padh // 2, padh // 2), (padw // 2, padw // 2), (0, 0)], mode="REFLECT"
)
return image
# Since the model was not initialized to take variable-length sizes (None, None, 3),
# we need to be careful about how we are resizing the images.
# From https://www.tensorflow.org/lite/examples/style_transfer/overview#pre-process_the_inputs
def resize_image(image, target_dim):
# Resize the image so that the shorter dimension becomes `target_dim`.
shape = tf.cast(tf.shape(image)[1:-1], tf.float32)
short_dim = min(shape)
scale = target_dim / short_dim
new_shape = tf.cast(shape * scale, tf.int32)
image = tf.image.resize(image, new_shape)
# Central crop the image.
image = tf.image.resize_with_crop_or_pad(image, target_dim, target_dim)
return image
def calculate_psnr(img1, img2, crop_border, test_y_channel=False):
"""Calculate PSNR (Peak Signal-to-Noise Ratio).
Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
Args:
img1 (ndarray): Images with range [0, 255].
img2 (ndarray): Images with range [0, 255].
crop_border (int): Cropped pixels in each edge of an image. These
pixels are not involved in the PSNR calculation.
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
Returns:
float: psnr result.
"""
assert (
img1.shape == img2.shape
), f"Image shapes are differnet: {img1.shape}, {img2.shape}."
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
if crop_border != 0:
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
if test_y_channel:
img1 = to_y_channel(img1)
img2 = to_y_channel(img2)
mse = np.mean((img1 - img2) ** 2)
if mse == 0:
return float("inf")
return 20.0 * np.log10(255.0 / np.sqrt(mse))
def _convert_input_type_range(img):
"""Convert the type and range of the input image.
It converts the input image to np.float32 type and range of [0, 1].
It is mainly used for pre-processing the input image in colorspace
convertion functions such as rgb2ycbcr and ycbcr2rgb.
Args:
img (ndarray): The input image. It accepts:
1. np.uint8 type with range [0, 255];
2. np.float32 type with range [0, 1].
Returns:
(ndarray): The converted image with type of np.float32 and range of
[0, 1].
"""
img_type = img.dtype
img = img.astype(np.float32)
if img_type == np.float32:
pass
elif img_type == np.uint8:
img /= 255.0
else:
raise TypeError(
"The img type should be np.float32 or np.uint8, " f"but got {img_type}"
)
return img
def _convert_output_type_range(img, dst_type):
"""Convert the type and range of the image according to dst_type.
It converts the image to desired type and range. If `dst_type` is np.uint8,
images will be converted to np.uint8 type with range [0, 255]. If
`dst_type` is np.float32, it converts the image to np.float32 type with
range [0, 1].
It is mainly used for post-processing images in colorspace convertion
functions such as rgb2ycbcr and ycbcr2rgb.
Args:
img (ndarray): The image to be converted with np.float32 type and
range [0, 255].
dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it
converts the image to np.uint8 type with range [0, 255]. If
dst_type is np.float32, it converts the image to np.float32 type
with range [0, 1].
Returns:
(ndarray): The converted image with desired type and range.
"""
if dst_type not in (np.uint8, np.float32):
raise TypeError(
"The dst_type should be np.float32 or np.uint8, " f"but got {dst_type}"
)
if dst_type == np.uint8:
img = img.round()
else:
img /= 255.0
return img.astype(dst_type)
def rgb2ycbcr(img, y_only=False):
"""Convert a RGB image to YCbCr image.
This function produces the same results as Matlab's `rgb2ycbcr` function.
It implements the ITU-R BT.601 conversion for standard-definition
television. See more details in
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
It differs from a similar function in cv2.cvtColor: `RGB <-> YCrCb`.
In OpenCV, it implements a JPEG conversion. See more details in
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
Args:
img (ndarray): The input image. It accepts:
1. np.uint8 type with range [0, 255];
2. np.float32 type with range [0, 1].
y_only (bool): Whether to only return Y channel. Default: False.
Returns:
ndarray: The converted YCbCr image. The output image has the same type
and range as input image.
"""
img_type = img.dtype
img = _convert_input_type_range(img)
if y_only:
out_img = np.dot(img, [65.481, 128.553, 24.966]) + 16.0
else:
out_img = (
np.matmul(
img,
[
[65.481, -37.797, 112.0],
[128.553, -74.203, -93.786],
[24.966, 112.0, -18.214],
],
)
+ [16, 128, 128]
)
out_img = _convert_output_type_range(out_img, img_type)
return out_img
def to_y_channel(img):
"""Change to Y channel of YCbCr.
Args:
img (ndarray): Images with range [0, 255].
Returns:
(ndarray): Images with range [0, 255] (float type) without round.
"""
img = img.astype(np.float32) / 255.0
if img.ndim == 3 and img.shape[2] == 3:
img = rgb2ycbcr(img, y_only=True)
img = img[..., None]
return img * 255.0
def augment_image(image, times=8):
"""Geometric augmentation."""
if times == 4: # only rotate image
images = []
for k in range(0, 4):
images.append(np.rot90(image, k=k))
images = np.stack(images, axis=0)
elif times == 8: # roate and flip image
images = []
for k in range(0, 4):
images.append(np.rot90(image, k=k))
image = np.fliplr(image)
for k in range(0, 4):
images.append(np.rot90(image, k=k))
images = np.stack(images, axis=0)
else:
raise Exception(f"Error times: {times}")
return images
def deaugment_image(images, times=8):
"""Reverse the geometric augmentation."""
if times == 4: # only rotate image
image = []
for k in range(0, 4):
image.append(np.rot90(images[k], k=4 - k))
image = np.stack(image, axis=0)
image = np.mean(image, axis=0)
elif times == 8: # roate and flip image
image = []
for k in range(0, 4):
image.append(np.rot90(images[k], k=4 - k))
for k in range(0, 4):
image.append(np.fliplr(np.rot90(images[4 + k], k=4 - k)))
image = np.mean(image, axis=0)
else:
raise Exception(f"Error times: {times}")
return image
def is_image_file(filename):
"""Check if it is an valid image file by extension."""
return any(
(filename.endswith(extension)) or (filename.endswith(extension.upper()))
for extension in _VALID_IMG_EXT
)
def save_img(img, pth):
"""Save an image to disk.
Args:
img: np.ndarry, [height, width, channels], img will be clipped to [0, 1]
before saved to pth.
pth: string, path to save the image to.
"""
Image.fromarray(np.array((np.clip(img, 0.0, 1.0) * 255.0).astype(np.uint8))).save(
pth, "PNG"
)
def make_shape_even(image):
"""Pad the image to have even shapes."""
height, width = image.shape[0], image.shape[1]
padh = 1 if height % 2 != 0 else 0
padw = 1 if width % 2 != 0 else 0
image = tf.pad(image, [(0, padh), (0, padw), (0, 0)], mode="REFLECT")
return image
def main(_):
print(FLAGS.dynamic_resize)
if FLAGS.save_images:
os.makedirs(FLAGS.output_dir, exist_ok=True)
if FLAGS.dynamic_resize:
print(
"Dynamic resizing is enabled. This means for each new input, the model"
" will be reinitialized and weights will be populated."
)
# sorted is important for continuning an inference job.
filepath = sorted(os.listdir(os.path.join(FLAGS.input_dir, "input")))
input_filenames = [
os.path.join(FLAGS.input_dir, "input", x) for x in filepath if is_image_file(x)
]
if FLAGS.has_target:
target_filenames = [
os.path.join(FLAGS.input_dir, "target", x)
for x in filepath
if is_image_file(x)
]
num_images = len(input_filenames)
print("Initializing model and loading model weights.")
model = tf.keras.models.load_model(FLAGS.ckpt_path)
print("Model successfully initialized and weights loaded.")
psnr_all = []
def _process_file(i):
print(f"Processing {i + 1} / {num_images}...")
input_file = input_filenames[i]
input_img = np.asarray(Image.open(input_file).convert("RGB"), np.float32) / 255.0
if FLAGS.has_target:
target_file = target_filenames[i]
target_img = (
np.asarray(Image.open(target_file).convert("RGB"), np.float32) / 255.0
)
if FLAGS.dynamic_resize:
height, width = input_img.shape[0], input_img.shape[1]
# Padding images to have even shapes
input_img = make_shape_even(input_img)
height_even, width_even = input_img.shape[0], input_img.shape[1]
# padding images to be multiplies of 64
input_img = mod_padding_symmetric(input_img, factor=64)
if FLAGS.geometric_ensemble:
input_img = augment_image(input_img, FLAGS.ensemble_times)
else:
input_img = tf.expand_dims(input_img, axis=0)
# resize to the bigger side and then take a crop.
# (since the model cannot operate on arbitrary input resolutions yet,
# there's a hack, see below)
if not FLAGS.dynamic_resize:
input_img = resize_image(tf.convert_to_tensor(input_img), _IMG_SIZE)
# To allow the model to operate on arbitrary input shapes, we need to instantiate
# the model every time there's a new input with new spatial resolutions.
# Once the model is initialized, we just load the weights and obtain predictions.
# reference: https://github.com/google-research/maxim/blob/main/maxim/run_eval.py#L45-#L61
if FLAGS.dynamic_resize:
configs = MAXIM_CONFIGS.get(_MODEL_VARIANT_DICT[FLAGS.task])
configs.update(
{
"variant": _MODEL_VARIANT_DICT[FLAGS.task],
"dropout_rate": 0.0,
"num_outputs": 3,
"use_bias": True,
"num_supervision_scales": 3,
}
)
configs.update({"input_resolution": (input_img.shape[1], input_img.shape[2])})
new_model = Model(**configs)
new_model.set_weights(model.get_weights())
print(
f"New model initialized with with resolution: {(input_img.shape[1], input_img.shape[2])}."
)
# handle multi-stage outputs, obtain the last scale output of last stage
preds = (
new_model.predict(input_img)
if FLAGS.dynamic_resize
else model.predict(input_img)
)
if isinstance(preds, list):
preds = preds[-1]
if isinstance(preds, list):
preds = preds[-1]
# De-ensemble by averaging inferenced results.
if FLAGS.geometric_ensemble:
preds = deaugment_image(preds, FLAGS.ensemble_times)
else:
preds = np.array(preds[0], np.float32)
# unpad images to get the original resolution
if FLAGS.dynamic_resize:
new_height, new_width = preds.shape[0], preds.shape[1]
h_start = new_height // 2 - height_even // 2
h_end = h_start + height
w_start = new_width // 2 - width_even // 2
w_end = w_start + width
preds = preds[h_start:h_end, w_start:w_end, :]
# print PSNR scores
if FLAGS.has_target:
psnr = calculate_psnr(
target_img * 255.0, preds * 255.0, crop_border=0, test_y_channel=False
)
print(f"{i}th image: psnr = {psnr:.4f}")
else:
psnr = -1
# save files
basename = os.path.basename(input_file)
if FLAGS.save_images:
save_pth = os.path.join(FLAGS.output_dir, basename)
save_img(preds, save_pth)
return psnr
for i in range(num_images):
psnr = _process_file(i)
psnr_all.append(psnr)
psnr_all = np.asarray(psnr_all)
print(f"average psnr = {np.sum(psnr_all)/num_images:.4f}")
print(f"std psnr = {np.std(psnr_all):.4f}")
if __name__ == "__main__":
app.run(main)