-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNNCostFunction.m
70 lines (47 loc) · 1.93 KB
/
NNCostFunction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
function [J grad] = NNCostFunction(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, Y, lambda)
% NNCOSTFUNCTON computes the cost and gradient of the neural network. The
% parameters for the neural network are "unrolled" into the vector
% nn_params and need to be converted back into the weight matrices.
%
% The returned parameter grad should be a "unrolled" vector of the
% partial derivatives of the neural network.
%
% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
% size of number of samples
m = size(X, 1);
% initialisation----
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));
% forward propagation-----
a1 = [ones(m,1) X];
z2 = a1 * Theta1';
a2 = [ones(m,1) sigmoid(z2)];
z3 = a2*Theta2';
hx = sigmoid(z3);
% cost calculator
J = (1/m)*sum(sum((-Y).*log(hx) - (1-Y).*log(1-hx),2));
% adding the regularisation term-------
reg = (lambda/(2*m))*(sum(sum(Theta1(:,2:end).^2,2)) + sum(sum(Theta2(:,2:end).^2,2)));
J = J + reg;
% backward propagation to calculate delta
d3 = hx - Y;
d2 = (d3*Theta2.*sigmoidGradient([ones(size(z2,1),1) z2]))(:,2:end);
% gradient calculate using the delta and node values
del1 = d2'*a1;
del2 = d3'*a2;
% addition of the regularisation term;
Theta1_grad = del1./m + (lambda/m)*[zeros(size(Theta1,1),1) Theta1(:,2:end)];
Theta2_grad = del2./m + (lambda/m)*[zeros(size(Theta2,1),1) Theta2(:,2:end)];
% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];
end