-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSS_ResidVariance.m
48 lines (37 loc) · 1.12 KB
/
SS_ResidVariance.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
function SS_ResidVariance
% PLOT RESIDUAL VARIANCE AS FUNCTION OF K
load('run_options.mat');
load('clusters_kmedoids.mat');
load('HCTSA_N.mat');
fprintf('Computing pairwise Euclidian distances for TS using all operations\n');
residVars = [];
pcaResidVars = [];
S = pdist(TS_DataMat);
[pcaM score] = pca(TS_DataMat);
% Loop through each
for i = 1:size(km,2)
kmed = km(i);
fprintf('Computing residual variance for k = %i\n',kmed.k);
reducedDataMatI = TS_DataMat(:,kmed.CCi);
S_redI = pdist(reducedDataMatI);
R = corr2(S,S_redI);
residVars = [residVars , 1 - (R^2)];
pcaRedMat = score(:,1:min(kmed.k,size(score,2)));
S_pcaRed = pdist(pcaRedMat);
pcaR = corr2(S,S_pcaRed);
% abs used to stop rounding errors giving -ve values
pcaResidVars = [pcaResidVars , abs(1 - (pcaR^2))];
if i == kIdx
reducedDataMat = reducedDataMatI;
S_red = S_redI;
end
end
figure;
plot([km.k],residVars);
hold on;
plot([km.k],pcaResidVars);
title('Residual Variance');
xlabel('k');
legend('K-medoids','PCA');
save('resid_variance.mat','residVars','S','S_red','reducedDataMat');
end