-
Notifications
You must be signed in to change notification settings - Fork 98
/
Copy pathInference.py
96 lines (75 loc) · 2.68 KB
/
Inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from flask import Flask,request,render_template
import requests
import json
from collections import OrderedDict
import os
import numpy as np
import tensorflow as tf
app =Flask(__name__)
import sys
if not 'texar_repo' in sys.path:
sys.path += ['texar_repo']
from config import *
from model import *
from preprocess import *
start_tokens = tf.fill([tx.utils.get_batch_size(src_input_ids)],
bos_token_id)
predictions = decoder(
memory=encoder_output,
memory_sequence_length=src_input_length,
decoding_strategy='infer_greedy',
beam_width=beam_width,
alpha=alpha,
start_tokens=start_tokens,
end_token=eos_token_id,
max_decoding_length=400,
mode=tf.estimator.ModeKeys.PREDICT
)
if beam_width <= 1:
inferred_ids = predictions[0].sample_id
else:
# Uses the best sample by beam search
inferred_ids = predictions['sample_id'][:, :, 0]
tokenizer = tokenization.FullTokenizer(
vocab_file=os.path.join(bert_pretrain_dir, 'vocab.txt'),
do_lower_case=True)
sess = tf.Session()
def infer_single_example(story,actual_summary,tokenizer):
example = {"src_txt":story,
"tgt_txt":actual_summary
}
features = convert_single_example(1,example,max_seq_length_src,max_seq_length_tgt,
tokenizer)
feed_dict = {
src_input_ids:np.array(features.src_input_ids).reshape(-1,1),
src_segment_ids : np.array(features.src_segment_ids).reshape(-1,1)
}
references, hypotheses = [], []
fetches = {
'inferred_ids': inferred_ids,
}
fetches_ = sess.run(fetches, feed_dict=feed_dict)
labels = np.array(features.tgt_labels).reshape(-1,1)
hypotheses.extend(h.tolist() for h in fetches_['inferred_ids'])
references.extend(r.tolist() for r in labels)
hypotheses = utils.list_strip_eos(hypotheses, eos_token_id)
references = utils.list_strip_eos(references[0], eos_token_id)
hwords = tokenizer.convert_ids_to_tokens(hypotheses[0])
rwords = tokenizer.convert_ids_to_tokens(references[0])
hwords = tx.utils.str_join(hwords).replace(" ##","")
rwords = tx.utils.str_join(rwords).replace(" ##","")
print("Original",rwords)
print("Generated",hwords)
return hwords
@app.route("/results",methods=["GET","POST"])
def results():
story = request.form['story']
summary = request.form['summary']
hwords = infer_single_example(story,summary,tokenizer)
return hwords
if __name__=="__main__":
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
sess.run(tf.tables_initializer())
saver.restore(sess, tf.train.latest_checkpoint(model_dir))
app.run(host="0.0.0.0",port=1118,debug=False)