@@ -1521,6 +1521,8 @@ def translation(self, displacement):
1521
1521
1522
1522
OUTPUT: the translated polyhedron
1523
1523
1524
+ .. SEEALSO:: :meth:`linear_transformation`, :meth:`dilation`
1525
+
1524
1526
EXAMPLES::
1525
1527
1526
1528
sage: P = Polyhedron([[0,0], [1,0], [0,1]], base_ring=ZZ)
@@ -1606,6 +1608,8 @@ def dilation(self, scalar):
1606
1608
The polyhedron dilated by that scalar, possibly coerced to a
1607
1609
bigger base ring.
1608
1610
1611
+ .. SEEALSO:: :meth:`linear_transformation`, :meth:`translation`
1612
+
1609
1613
EXAMPLES::
1610
1614
1611
1615
sage: p = Polyhedron(vertices=[[t,t^2,t^3] for t in srange(2,6)])
@@ -1763,6 +1767,8 @@ def linear_transformation(self, linear_transf,
1763
1767
The polyhedron transformed by that matrix, possibly coerced to a
1764
1768
bigger base ring.
1765
1769
1770
+ .. SEEALSO:: :meth:`dilation`, :meth:`translation`
1771
+
1766
1772
EXAMPLES::
1767
1773
1768
1774
sage: b3 = polytopes.Birkhoff_polytope(3)
@@ -1810,9 +1816,12 @@ def linear_transformation(self, linear_transf,
1810
1816
1811
1817
One can scale by a scalar as follows::
1812
1818
1813
- sage: P = polytopes.simplex()
1814
- sage: P.linear_transformation(2)
1815
- A 3-dimensional polyhedron in QQ^4 defined as the convex hull of 4 vertices
1819
+ sage: P = polytopes.cube()
1820
+ sage: P2 = P.linear_transformation(2); P2
1821
+ A 3-dimensional polyhedron in QQ^3 defined as
1822
+ the convex hull of 8 vertices
1823
+ sage: P2.volume()
1824
+ 64
1816
1825
1817
1826
Linear transformation respects backend::
1818
1827
0 commit comments