-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbTreeDelete.cpp
667 lines (547 loc) · 15.8 KB
/
bTreeDelete.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
#include<iostream>
using namespace std;
// A BTree node
class BTreeNode
{
int *keys; // An array of keys
int t; // Minimum degree (defines the range for number of keys)
BTreeNode **C; // An array of child pointers
int n; // Current number of keys
bool leaf; // Is true when node is leaf. Otherwise false
public:
BTreeNode(int _t, bool _leaf); // Constructor
// A function to traverse all nodes in a subtree rooted with this node
void traverse();
// A function to search a key in subtree rooted with this node.
BTreeNode *search(int k); // returns NULL if k is not present.
// A function that returns the index of the first key that is greater
// or equal to k
int findKey(int k);
// A utility function to insert a new key in the subtree rooted with
// this node. The assumption is, the node must be non-full when this
// function is called
void insertNonFull(int k);
// A utility function to split the child y of this node. i is index
// of y in child array C[]. The Child y must be full when this
// function is called
void splitChild(int i, BTreeNode *y);
// A wrapper function to remove the key k in subtree rooted with
// this node.
void remove(int k);
// A function to remove the key present in idx-th position in
// this node which is a leaf
void removeFromLeaf(int idx);
// A function to remove the key present in idx-th position in
// this node which is a non-leaf node
void removeFromNonLeaf(int idx);
// A function to get the predecessor of the key- where the key
// is present in the idx-th position in the node
int getPred(int idx);
// A function to get the successor of the key- where the key
// is present in the idx-th position in the node
int getSucc(int idx);
// A function to fill up the child node present in the idx-th
// position in the C[] array if that child has less than t-1 keys
void fill(int idx);
// A function to borrow a key from the C[idx-1]-th node and place
// it in C[idx]th node
void borrowFromPrev(int idx);
// A function to borrow a key from the C[idx+1]-th node and place it
// in C[idx]th node
void borrowFromNext(int idx);
// A function to merge idx-th child of the node with (idx+1)th child of
// the node
void merge(int idx);
// Make BTree friend of this so that we can access private members of
// this class in BTree functions
friend class BTree;
};
class BTree
{
BTreeNode *root; // Pointer to root node
int t; // Minimum degree
public:
// Constructor (Initializes tree as empty)
BTree(int _t)
{
root = NULL;
t = _t;
}
void traverse()
{
if (root != NULL) root->traverse();
}
// function to search a key in this tree
BTreeNode* search(int k)
{
return (root == NULL)? NULL : root->search(k);
}
// The main function that inserts a new key in this B-Tree
void insert(int k);
// The main function that removes a new key in this B-Tree
void remove(int k);
};
BTreeNode::BTreeNode(int t1, bool leaf1)
{
// Copy the given minimum degree and leaf property
t = t1;
leaf = leaf1;
// Allocate memory for maximum number of possible keys
// and child pointers
keys = new int[2*t-1];
C = new BTreeNode *[2*t];
// Initialize the number of keys as 0
n = 0;
}
// A utility function that returns the index of the first key that is
// greater than or equal to k
int BTreeNode::findKey(int k)
{
int idx=0;
while (idx<n && keys[idx] < k)
++idx;
return idx;
}
// A function to remove the key k from the sub-tree rooted with this node
void BTreeNode::remove(int k)
{
int idx = findKey(k);
// The key to be removed is present in this node
if (idx < n && keys[idx] == k)
{
// If the node is a leaf node - removeFromLeaf is called
// Otherwise, removeFromNonLeaf function is called
if (leaf)
removeFromLeaf(idx);
else
removeFromNonLeaf(idx);
}
else
{
// If this node is a leaf node, then the key is not present in tree
if (leaf)
{
cout<<"The key "<<k<<" is does not exist in the tree\n";
return;
}
// The key to be removed is present in the sub-tree rooted with this node
// The flag indicates whether the key is present in the sub-tree rooted
// with the last child of this node
bool flag = ( (idx==n)? true : false );
// If the child where the key is supposed to exist has less that t keys,
// we fill that child
if (C[idx]->n < t)
fill(idx);
// If the last child has been merged, it must have merged with the previous
// child and so we recurse on the (idx-1)th child. Else, we recurse on the
// (idx)th child which now has atleast t keys
if (flag && idx > n)
C[idx-1]->remove(k);
else
C[idx]->remove(k);
}
return;
}
// A function to remove the idx-th key from this node - which is a leaf node
void BTreeNode::removeFromLeaf (int idx)
{
// Move all the keys after the idx-th pos one place backward
for (int i=idx+1; i<n; ++i)
keys[i-1] = keys[i];
// Reduce the count of keys
n--;
return;
}
// A function to remove the idx-th key from this node - which is a non-leaf node
void BTreeNode::removeFromNonLeaf(int idx)
{
int k = keys[idx];
// If the child that precedes k (C[idx]) has atleast t keys,
// find the predecessor 'pred' of k in the subtree rooted at
// C[idx]. Replace k by pred. Recursively delete pred
// in C[idx]
if (C[idx]->n >= t)
{
int pred = getPred(idx);
keys[idx] = pred;
C[idx]->remove(pred);
}
// If the child C[idx] has less that t keys, examine C[idx+1].
// If C[idx+1] has atleast t keys, find the successor 'succ' of k in
// the subtree rooted at C[idx+1]
// Replace k by succ
// Recursively delete succ in C[idx+1]
else if (C[idx+1]->n >= t)
{
int succ = getSucc(idx);
keys[idx] = succ;
C[idx+1]->remove(succ);
}
// If both C[idx] and C[idx+1] has less that t keys,merge k and all of C[idx+1]
// into C[idx]
// Now C[idx] contains 2t-1 keys
// Free C[idx+1] and recursively delete k from C[idx]
else
{
merge(idx);
C[idx]->remove(k);
}
return;
}
// A function to get predecessor of keys[idx]
int BTreeNode::getPred(int idx)
{
// Keep moving to the right most node until we reach a leaf
BTreeNode *cur=C[idx];
while (!cur->leaf)
cur = cur->C[cur->n];
// Return the last key of the leaf
return cur->keys[cur->n-1];
}
int BTreeNode::getSucc(int idx)
{
// Keep moving the left most node starting from C[idx+1] until we reach a leaf
BTreeNode *cur = C[idx+1];
while (!cur->leaf)
cur = cur->C[0];
// Return the first key of the leaf
return cur->keys[0];
}
// A function to fill child C[idx] which has less than t-1 keys
void BTreeNode::fill(int idx)
{
// If the previous child(C[idx-1]) has more than t-1 keys, borrow a key
// from that child
if (idx!=0 && C[idx-1]->n>=t)
borrowFromPrev(idx);
// If the next child(C[idx+1]) has more than t-1 keys, borrow a key
// from that child
else if (idx!=n && C[idx+1]->n>=t)
borrowFromNext(idx);
// Merge C[idx] with its sibling
// If C[idx] is the last child, merge it with its previous sibling
// Otherwise merge it with its next sibling
else
{
if (idx != n)
merge(idx);
else
merge(idx-1);
}
return;
}
// A function to borrow a key from C[idx-1] and insert it
// into C[idx]
void BTreeNode::borrowFromPrev(int idx)
{
BTreeNode *child=C[idx];
BTreeNode *sibling=C[idx-1];
// The last key from C[idx-1] goes up to the parent and key[idx-1]
// from parent is inserted as the first key in C[idx]. Thus, the loses
// sibling one key and child gains one key
// Moving all key in C[idx] one step ahead
for (int i=child->n-1; i>=0; --i)
child->keys[i+1] = child->keys[i];
// If C[idx] is not a leaf, move all its child pointers one step ahead
if (!child->leaf)
{
for(int i=child->n; i>=0; --i)
child->C[i+1] = child->C[i];
}
// Setting child's first key equal to keys[idx-1] from the current node
child->keys[0] = keys[idx-1];
// Moving sibling's last child as C[idx]'s first child
if(!child->leaf)
child->C[0] = sibling->C[sibling->n];
// Moving the key from the sibling to the parent
// This reduces the number of keys in the sibling
keys[idx-1] = sibling->keys[sibling->n-1];
child->n += 1;
sibling->n -= 1;
return;
}
// A function to borrow a key from the C[idx+1] and place
// it in C[idx]
void BTreeNode::borrowFromNext(int idx)
{
BTreeNode *child=C[idx];
BTreeNode *sibling=C[idx+1];
// keys[idx] is inserted as the last key in C[idx]
child->keys[(child->n)] = keys[idx];
// Sibling's first child is inserted as the last child
// into C[idx]
if (!(child->leaf))
child->C[(child->n)+1] = sibling->C[0];
//The first key from sibling is inserted into keys[idx]
keys[idx] = sibling->keys[0];
// Moving all keys in sibling one step behind
for (int i=1; i<sibling->n; ++i)
sibling->keys[i-1] = sibling->keys[i];
// Moving the child pointers one step behind
if (!sibling->leaf)
{
for(int i=1; i<=sibling->n; ++i)
sibling->C[i-1] = sibling->C[i];
}
// Increasing and decreasing the key count of C[idx] and C[idx+1]
// respectively
child->n += 1;
sibling->n -= 1;
return;
}
// A function to merge C[idx] with C[idx+1]
// C[idx+1] is freed after merging
void BTreeNode::merge(int idx)
{
BTreeNode *child = C[idx];
BTreeNode *sibling = C[idx+1];
// Pulling a key from the current node and inserting it into (t-1)th
// position of C[idx]
child->keys[t-1] = keys[idx];
// Copying the keys from C[idx+1] to C[idx] at the end
for (int i=0; i<sibling->n; ++i)
child->keys[i+t] = sibling->keys[i];
// Copying the child pointers from C[idx+1] to C[idx]
if (!child->leaf)
{
for(int i=0; i<=sibling->n; ++i)
child->C[i+t] = sibling->C[i];
}
// Moving all keys after idx in the current node one step before -
// to fill the gap created by moving keys[idx] to C[idx]
for (int i=idx+1; i<n; ++i)
keys[i-1] = keys[i];
// Moving the child pointers after (idx+1) in the current node one
// step before
for (int i=idx+2; i<=n; ++i)
C[i-1] = C[i];
// Updating the key count of child and the current node
child->n += sibling->n+1;
n--;
// Freeing the memory occupied by sibling
delete(sibling);
return;
}
// The main function that inserts a new key in this B-Tree
void BTree::insert(int k)
{
// If tree is empty
if (root == NULL)
{
// Allocate memory for root
root = new BTreeNode(t, true);
root->keys[0] = k; // Insert key
root->n = 1; // Update number of keys in root
}
else // If tree is not empty
{
// If root is full, then tree grows in height
if (root->n == 2*t-1)
{
// Allocate memory for new root
BTreeNode *s = new BTreeNode(t, false);
// Make old root as child of new root
s->C[0] = root;
// Split the old root and move 1 key to the new root
s->splitChild(0, root);
// New root has two children now. Decide which of the
// two children is going to have new key
int i = 0;
if (s->keys[0] < k)
i++;
s->C[i]->insertNonFull(k);
// Change root
root = s;
}
else // If root is not full, call insertNonFull for root
root->insertNonFull(k);
}
}
// A utility function to insert a new key in this node
// The assumption is, the node must be non-full when this
// function is called
void BTreeNode::insertNonFull(int k)
{
// Initialize index as index of rightmost element
int i = n-1;
// If this is a leaf node
if (leaf == true)
{
// The following loop does two things
// a) Finds the location of new key to be inserted
// b) Moves all greater keys to one place ahead
while (i >= 0 && keys[i] > k)
{
keys[i+1] = keys[i];
i--;
}
// Insert the new key at found location
keys[i+1] = k;
n = n+1;
}
else // If this node is not leaf
{
// Find the child which is going to have the new key
while (i >= 0 && keys[i] > k)
i--;
// See if the found child is full
if (C[i+1]->n == 2*t-1)
{
// If the child is full, then split it
splitChild(i+1, C[i+1]);
// After split, the middle key of C[i] goes up and
// C[i] is splitted into two. See which of the two
// is going to have the new key
if (keys[i+1] < k)
i++;
}
C[i+1]->insertNonFull(k);
}
}
// A utility function to split the child y of this node
// Note that y must be full when this function is called
void BTreeNode::splitChild(int i, BTreeNode *y)
{
// Create a new node which is going to store (t-1) keys
// of y
BTreeNode *z = new BTreeNode(y->t, y->leaf);
z->n = t - 1;
// Copy the last (t-1) keys of y to z
for (int j = 0; j < t-1; j++)
z->keys[j] = y->keys[j+t];
// Copy the last t children of y to z
if (y->leaf == false)
{
for (int j = 0; j < t; j++)
z->C[j] = y->C[j+t];
}
// Reduce the number of keys in y
y->n = t - 1;
// Since this node is going to have a new child,
// create space of new child
for (int j = n; j >= i+1; j--)
C[j+1] = C[j];
// Link the new child to this node
C[i+1] = z;
// A key of y will move to this node. Find location of
// new key and move all greater keys one space ahead
for (int j = n-1; j >= i; j--)
keys[j+1] = keys[j];
// Copy the middle key of y to this node
keys[i] = y->keys[t-1];
// Increment count of keys in this node
n = n + 1;
}
// Function to traverse all nodes in a subtree rooted with this node
void BTreeNode::traverse()
{
// There are n keys and n+1 children, traverse through n keys
// and first n children
int i;
for (i = 0; i < n; i++)
{
// If this is not leaf, then before printing key[i],
// traverse the subtree rooted with child C[i].
if (leaf == false)
C[i]->traverse();
cout << " " << keys[i];
}
// Print the subtree rooted with last child
if (leaf == false)
C[i]->traverse();
}
// Function to search key k in subtree rooted with this node
BTreeNode *BTreeNode::search(int k)
{
// Find the first key greater than or equal to k
int i = 0;
while (i < n && k > keys[i])
i++;
// If the found key is equal to k, return this node
if (keys[i] == k)
return this;
// If key is not found here and this is a leaf node
if (leaf == true)
return NULL;
// Go to the appropriate child
return C[i]->search(k);
}
void BTree::remove(int k)
{
if (!root)
{
cout << "The tree is empty\n";
return;
}
// Call the remove function for root
root->remove(k);
// If the root node has 0 keys, make its first child as the new root
// if it has a child, otherwise set root as NULL
if (root->n==0)
{
BTreeNode *tmp = root;
if (root->leaf)
root = NULL;
else
root = root->C[0];
// Free the old root
delete tmp;
}
return;
}
// Driver program to test above functions
int main()
{
BTree t(3); // A B-Tree with minimum degree 3
t.insert(1);
t.insert(3);
t.insert(7);
t.insert(10);
t.insert(11);
t.insert(13);
t.insert(14);
t.insert(15);
t.insert(18);
t.insert(16);
t.insert(19);
t.insert(24);
t.insert(25);
t.insert(26);
t.insert(21);
t.insert(4);
t.insert(5);
t.insert(20);
t.insert(22);
t.insert(2);
t.insert(17);
t.insert(12);
t.insert(6);
cout << "Traversal of tree constructed is\n";
t.traverse();
cout << endl;
t.remove(6);
cout << "Traversal of tree after removing 6\n";
t.traverse();
cout << endl;
t.remove(13);
cout << "Traversal of tree after removing 13\n";
t.traverse();
cout << endl;
t.remove(7);
cout << "Traversal of tree after removing 7\n";
t.traverse();
cout << endl;
t.remove(4);
cout << "Traversal of tree after removing 4\n";
t.traverse();
cout << endl;
t.remove(2);
cout << "Traversal of tree after removing 2\n";
t.traverse();
cout << endl;
t.remove(16);
cout << "Traversal of tree after removing 16\n";
t.traverse();
cout << endl;
return 0;
}