-
Notifications
You must be signed in to change notification settings - Fork 13.2k
/
Copy pathauto_trait.rs
1497 lines (1355 loc) · 62.5 KB
/
auto_trait.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2018 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use rustc::ty::TypeFoldable;
use super::*;
pub struct AutoTraitFinder<'a, 'tcx: 'a, 'rcx: 'a> {
pub cx: &'a core::DocContext<'a, 'tcx, 'rcx>,
}
impl<'a, 'tcx, 'rcx> AutoTraitFinder<'a, 'tcx, 'rcx> {
pub fn get_with_def_id(&self, def_id: DefId) -> Vec<Item> {
let ty = self.cx.tcx.type_of(def_id);
let def_ctor: fn(DefId) -> Def = match ty.sty {
ty::TyAdt(adt, _) => match adt.adt_kind() {
AdtKind::Struct => Def::Struct,
AdtKind::Enum => Def::Enum,
AdtKind::Union => Def::Union,
}
_ => panic!("Unexpected type {:?}", def_id),
};
self.get_auto_trait_impls(def_id, def_ctor, None)
}
pub fn get_with_node_id(&self, id: ast::NodeId, name: String) -> Vec<Item> {
let item = &self.cx.tcx.hir.expect_item(id).node;
let did = self.cx.tcx.hir.local_def_id(id);
let def_ctor = match *item {
hir::ItemStruct(_, _) => Def::Struct,
hir::ItemUnion(_, _) => Def::Union,
hir::ItemEnum(_, _) => Def::Enum,
_ => panic!("Unexpected type {:?} {:?}", item, id),
};
self.get_auto_trait_impls(did, def_ctor, Some(name))
}
pub fn get_auto_trait_impls(
&self,
def_id: DefId,
def_ctor: fn(DefId) -> Def,
name: Option<String>,
) -> Vec<Item> {
if self.cx
.tcx
.get_attrs(def_id)
.lists("doc")
.has_word("hidden")
{
debug!(
"get_auto_trait_impls(def_id={:?}, def_ctor={:?}): item has doc('hidden'), \
aborting",
def_id, def_ctor
);
return Vec::new();
}
let tcx = self.cx.tcx;
let generics = self.cx.tcx.generics_of(def_id);
debug!(
"get_auto_trait_impls(def_id={:?}, def_ctor={:?}, generics={:?}",
def_id, def_ctor, generics
);
let auto_traits: Vec<_> = self.cx
.send_trait
.and_then(|send_trait| {
self.get_auto_trait_impl_for(
def_id,
name.clone(),
generics.clone(),
def_ctor,
send_trait,
)
})
.into_iter()
.chain(self.get_auto_trait_impl_for(
def_id,
name.clone(),
generics.clone(),
def_ctor,
tcx.require_lang_item(lang_items::SyncTraitLangItem),
).into_iter())
.collect();
debug!(
"get_auto_traits: type {:?} auto_traits {:?}",
def_id, auto_traits
);
auto_traits
}
fn get_auto_trait_impl_for(
&self,
def_id: DefId,
name: Option<String>,
generics: ty::Generics,
def_ctor: fn(DefId) -> Def,
trait_def_id: DefId,
) -> Option<Item> {
if !self.cx
.generated_synthetics
.borrow_mut()
.insert((def_id, trait_def_id))
{
debug!(
"get_auto_trait_impl_for(def_id={:?}, generics={:?}, def_ctor={:?}, \
trait_def_id={:?}): already generated, aborting",
def_id, generics, def_ctor, trait_def_id
);
return None;
}
let result = self.find_auto_trait_generics(def_id, trait_def_id, &generics);
if result.is_auto() {
let trait_ = hir::TraitRef {
path: get_path_for_type(self.cx.tcx, trait_def_id, hir::def::Def::Trait),
ref_id: ast::DUMMY_NODE_ID,
};
let polarity;
let new_generics = match result {
AutoTraitResult::PositiveImpl(new_generics) => {
polarity = None;
new_generics
}
AutoTraitResult::NegativeImpl => {
polarity = Some(ImplPolarity::Negative);
// For negative impls, we use the generic params, but *not* the predicates,
// from the original type. Otherwise, the displayed impl appears to be a
// conditional negative impl, when it's really unconditional.
//
// For example, consider the struct Foo<T: Copy>(*mut T). Using
// the original predicates in our impl would cause us to generate
// `impl !Send for Foo<T: Copy>`, which makes it appear that Foo
// implements Send where T is not copy.
//
// Instead, we generate `impl !Send for Foo<T>`, which better
// expresses the fact that `Foo<T>` never implements `Send`,
// regardless of the choice of `T`.
let real_generics = (&generics, &Default::default());
// Clean the generics, but ignore the '?Sized' bounds generated
// by the `Clean` impl
let clean_generics = real_generics.clean(self.cx);
Generics {
params: clean_generics.params,
where_predicates: Vec::new(),
}
}
_ => unreachable!(),
};
let path = get_path_for_type(self.cx.tcx, def_id, def_ctor);
let mut segments = path.segments.into_vec();
let last = segments.pop().unwrap();
let real_name = name.as_ref().map(|n| Symbol::from(n.as_str()));
segments.push(hir::PathSegment::new(
real_name.unwrap_or(last.name),
self.generics_to_path_params(generics.clone()),
false,
));
let new_path = hir::Path {
span: path.span,
def: path.def,
segments: HirVec::from_vec(segments),
};
let ty = hir::Ty {
id: ast::DUMMY_NODE_ID,
node: hir::Ty_::TyPath(hir::QPath::Resolved(None, P(new_path))),
span: DUMMY_SP,
hir_id: hir::DUMMY_HIR_ID,
};
return Some(Item {
source: Span::empty(),
name: None,
attrs: Default::default(),
visibility: None,
def_id: self.next_def_id(def_id.krate),
stability: None,
deprecation: None,
inner: ImplItem(Impl {
unsafety: hir::Unsafety::Normal,
generics: new_generics,
provided_trait_methods: FxHashSet(),
trait_: Some(trait_.clean(self.cx)),
for_: ty.clean(self.cx),
items: Vec::new(),
polarity,
synthetic: true,
}),
});
}
None
}
fn generics_to_path_params(&self, generics: ty::Generics) -> hir::PathParameters {
let lifetimes = HirVec::from_vec(
generics
.regions
.iter()
.map(|p| {
let name = if p.name == "" {
hir::LifetimeName::Static
} else {
hir::LifetimeName::Name(p.name)
};
hir::Lifetime {
id: ast::DUMMY_NODE_ID,
span: DUMMY_SP,
name,
}
})
.collect(),
);
let types = HirVec::from_vec(
generics
.types
.iter()
.map(|p| P(self.ty_param_to_ty(p.clone())))
.collect(),
);
hir::PathParameters {
lifetimes: lifetimes,
types: types,
bindings: HirVec::new(),
parenthesized: false,
}
}
fn ty_param_to_ty(&self, param: ty::TypeParameterDef) -> hir::Ty {
debug!("ty_param_to_ty({:?}) {:?}", param, param.def_id);
hir::Ty {
id: ast::DUMMY_NODE_ID,
node: hir::Ty_::TyPath(hir::QPath::Resolved(
None,
P(hir::Path {
span: DUMMY_SP,
def: Def::TyParam(param.def_id),
segments: HirVec::from_vec(vec![hir::PathSegment::from_name(param.name)]),
}),
)),
span: DUMMY_SP,
hir_id: hir::DUMMY_HIR_ID,
}
}
fn find_auto_trait_generics(
&self,
did: DefId,
trait_did: DefId,
generics: &ty::Generics,
) -> AutoTraitResult {
let tcx = self.cx.tcx;
let ty = self.cx.tcx.type_of(did);
let orig_params = tcx.param_env(did);
let trait_ref = ty::TraitRef {
def_id: trait_did,
substs: tcx.mk_substs_trait(ty, &[]),
};
let trait_pred = ty::Binder(trait_ref);
let bail_out = tcx.infer_ctxt().enter(|infcx| {
let mut selcx = SelectionContext::with_negative(&infcx, true);
let result = selcx.select(&Obligation::new(
ObligationCause::dummy(),
orig_params,
trait_pred.to_poly_trait_predicate(),
));
match result {
Ok(Some(Vtable::VtableImpl(_))) => {
debug!(
"find_auto_trait_generics(did={:?}, trait_did={:?}, generics={:?}): \
manual impl found, bailing out",
did, trait_did, generics
);
return true;
}
_ => return false,
};
});
// If an explicit impl exists, it always takes priority over an auto impl
if bail_out {
return AutoTraitResult::ExplicitImpl;
}
return tcx.infer_ctxt().enter(|mut infcx| {
let mut fresh_preds = FxHashSet();
// Due to the way projections are handled by SelectionContext, we need to run
// evaluate_predicates twice: once on the original param env, and once on the result of
// the first evaluate_predicates call.
//
// The problem is this: most of rustc, including SelectionContext and traits::project,
// are designed to work with a concrete usage of a type (e.g. Vec<u8>
// fn<T>() { Vec<T> }. This information will generally never change - given
// the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
// If we're unable to prove that 'T' implements a particular trait, we're done -
// there's nothing left to do but error out.
//
// However, synthesizing an auto trait impl works differently. Here, we start out with
// a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
// with - and progressively discover the conditions we need to fulfill for it to
// implement a certain auto trait. This ends up breaking two assumptions made by trait
// selection and projection:
//
// * We can always cache the result of a particular trait selection for the lifetime of
// an InfCtxt
// * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
// SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
//
// We fix the first assumption by manually clearing out all of the InferCtxt's caches
// in between calls to SelectionContext.select. This allows us to keep all of the
// intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
// them between calls.
//
// We fix the second assumption by reprocessing the result of our first call to
// evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
// pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
// traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
// SelectionContext to return it back to us.
let (new_env, user_env) = match self.evaluate_predicates(
&mut infcx,
did,
trait_did,
ty,
orig_params.clone(),
orig_params,
&mut fresh_preds,
false,
) {
Some(e) => e,
None => return AutoTraitResult::NegativeImpl,
};
let (full_env, full_user_env) = self.evaluate_predicates(
&mut infcx,
did,
trait_did,
ty,
new_env.clone(),
user_env,
&mut fresh_preds,
true,
).unwrap_or_else(|| {
panic!(
"Failed to fully process: {:?} {:?} {:?}",
ty, trait_did, orig_params
)
});
debug!(
"find_auto_trait_generics(did={:?}, trait_did={:?}, generics={:?}): fulfilling \
with {:?}",
did, trait_did, generics, full_env
);
infcx.clear_caches();
// At this point, we already have all of the bounds we need. FulfillmentContext is used
// to store all of the necessary region/lifetime bounds in the InferContext, as well as
// an additional sanity check.
let mut fulfill = FulfillmentContext::new();
fulfill.register_bound(
&infcx,
full_env,
ty,
trait_did,
ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID),
);
fulfill.select_all_or_error(&infcx).unwrap_or_else(|e| {
panic!(
"Unable to fulfill trait {:?} for '{:?}': {:?}",
trait_did, ty, e
)
});
let names_map: FxHashMap<String, Lifetime> = generics
.regions
.iter()
.map(|l| (l.name.as_str().to_string(), l.clean(self.cx)))
.collect();
let body_ids: FxHashSet<_> = infcx
.region_obligations
.borrow()
.iter()
.map(|&(id, _)| id)
.collect();
for id in body_ids {
infcx.process_registered_region_obligations(&[], None, full_env.clone(), id);
}
let region_data = infcx
.borrow_region_constraints()
.region_constraint_data()
.clone();
let lifetime_predicates = self.handle_lifetimes(®ion_data, &names_map);
let vid_to_region = self.map_vid_to_region(®ion_data);
debug!(
"find_auto_trait_generics(did={:?}, trait_did={:?}, generics={:?}): computed \
lifetime information '{:?}' '{:?}'",
did, trait_did, generics, lifetime_predicates, vid_to_region
);
let new_generics = self.param_env_to_generics(
infcx.tcx,
did,
full_user_env,
generics.clone(),
lifetime_predicates,
vid_to_region,
);
debug!(
"find_auto_trait_generics(did={:?}, trait_did={:?}, generics={:?}): finished with \
{:?}",
did, trait_did, generics, new_generics
);
return AutoTraitResult::PositiveImpl(new_generics);
});
}
fn clean_pred<'c, 'd, 'cx>(
&self,
infcx: &InferCtxt<'c, 'd, 'cx>,
p: ty::Predicate<'cx>,
) -> ty::Predicate<'cx> {
infcx.freshen(p)
}
fn evaluate_nested_obligations<'b, 'c, 'd, 'cx,
T: Iterator<Item = Obligation<'cx, ty::Predicate<'cx>>>>(
&self,
ty: ty::Ty,
nested: T,
computed_preds: &'b mut FxHashSet<ty::Predicate<'cx>>,
fresh_preds: &'b mut FxHashSet<ty::Predicate<'cx>>,
predicates: &'b mut VecDeque<ty::PolyTraitPredicate<'cx>>,
select: &mut traits::SelectionContext<'c, 'd, 'cx>,
only_projections: bool,
) -> bool {
let dummy_cause = ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID);
for (obligation, predicate) in nested
.filter(|o| o.recursion_depth == 1)
.map(|o| (o.clone(), o.predicate.clone()))
{
let is_new_pred =
fresh_preds.insert(self.clean_pred(select.infcx(), predicate.clone()));
match &predicate {
&ty::Predicate::Trait(ref p) => {
let substs = &p.skip_binder().trait_ref.substs;
if self.is_of_param(substs) && !only_projections && is_new_pred {
computed_preds.insert(predicate);
}
predicates.push_back(p.clone());
}
&ty::Predicate::Projection(p) => {
// If the projection isn't all type vars, then
// we don't want to add it as a bound
if self.is_of_param(p.skip_binder().projection_ty.substs) && is_new_pred {
computed_preds.insert(predicate);
} else {
match traits::poly_project_and_unify_type(
select,
&obligation.with(p.clone()),
) {
Err(e) => {
debug!(
"evaluate_nested_obligations: Unable to unify predicate \
'{:?}' '{:?}', bailing out",
ty, e
);
return false;
}
Ok(Some(v)) => {
if !self.evaluate_nested_obligations(
ty,
v.clone().iter().cloned(),
computed_preds,
fresh_preds,
predicates,
select,
only_projections,
) {
return false;
}
}
Ok(None) => {
panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
}
}
}
}
&ty::Predicate::RegionOutlives(ref binder) => {
if let Err(_) = select
.infcx()
.region_outlives_predicate(&dummy_cause, binder)
{
return false;
}
}
&ty::Predicate::TypeOutlives(ref binder) => {
match (
binder.no_late_bound_regions(),
binder.map_bound_ref(|pred| pred.0).no_late_bound_regions(),
) {
(None, Some(t_a)) => {
select.infcx().register_region_obligation(
ast::DUMMY_NODE_ID,
RegionObligation {
sup_type: t_a,
sub_region: select.infcx().tcx.types.re_static,
cause: dummy_cause.clone(),
},
);
}
(Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
select.infcx().register_region_obligation(
ast::DUMMY_NODE_ID,
RegionObligation {
sup_type: t_a,
sub_region: r_b,
cause: dummy_cause.clone(),
},
);
}
_ => {}
};
}
_ => panic!("Unexpected predicate {:?} {:?}", ty, predicate),
};
}
return true;
}
// The core logic responsible for computing the bounds for our synthesized impl.
//
// To calculate the bounds, we call SelectionContext.select in a loop. Like FulfillmentContext,
// we recursively select the nested obligations of predicates we encounter. However, whenver we
// encounter an UnimplementedError involving a type parameter, we add it to our ParamEnv. Since
// our goal is to determine when a particular type implements an auto trait, Unimplemented
// errors tell us what conditions need to be met.
//
// This method ends up working somewhat similary to FulfillmentContext, but with a few key
// differences. FulfillmentContext works under the assumption that it's dealing with concrete
// user code. According, it considers all possible ways that a Predicate could be met - which
// isn't always what we want for a synthesized impl. For example, given the predicate 'T:
// Iterator', FulfillmentContext can end up reporting an Unimplemented error for T:
// IntoIterator - since there's an implementation of Iteratpr where T: IntoIterator,
// FulfillmentContext will drive SelectionContext to consider that impl before giving up. If we
// were to rely on FulfillmentContext's decision, we might end up synthesizing an impl like
// this:
// 'impl<T> Send for Foo<T> where T: IntoIterator'
//
// While it might be technically true that Foo implements Send where T: IntoIterator,
// the bound is overly restrictive - it's really only necessary that T: Iterator.
//
// For this reason, evaluate_predicates handles predicates with type variables specially. When
// we encounter an Unimplemented error for a bound such as 'T: Iterator', we immediately add it
// to our ParamEnv, and add it to our stack for recursive evaluation. When we later select it,
// we'll pick up any nested bounds, without ever inferring that 'T: IntoIterator' needs to
// hold.
//
// One additonal consideration is supertrait bounds. Normally, a ParamEnv is only ever
// consutrcted once for a given type. As part of the construction process, the ParamEnv will
// have any supertrait bounds normalized - e.g. if we have a type 'struct Foo<T: Copy>', the
// ParamEnv will contain 'T: Copy' and 'T: Clone', since 'Copy: Clone'. When we construct our
// own ParamEnv, we need to do this outselves, through traits::elaborate_predicates, or else
// SelectionContext will choke on the missing predicates. However, this should never show up in
// the final synthesized generics: we don't want our generated docs page to contain something
// like 'T: Copy + Clone', as that's redundant. Therefore, we keep track of a separate
// 'user_env', which only holds the predicates that will actually be displayed to the user.
fn evaluate_predicates<'b, 'gcx, 'c>(
&self,
infcx: &mut InferCtxt<'b, 'tcx, 'c>,
ty_did: DefId,
trait_did: DefId,
ty: ty::Ty<'c>,
param_env: ty::ParamEnv<'c>,
user_env: ty::ParamEnv<'c>,
fresh_preds: &mut FxHashSet<ty::Predicate<'c>>,
only_projections: bool,
) -> Option<(ty::ParamEnv<'c>, ty::ParamEnv<'c>)> {
let tcx = infcx.tcx;
let mut select = traits::SelectionContext::new(&infcx);
let mut already_visited = FxHashSet();
let mut predicates = VecDeque::new();
predicates.push_back(ty::Binder(ty::TraitPredicate {
trait_ref: ty::TraitRef {
def_id: trait_did,
substs: infcx.tcx.mk_substs_trait(ty, &[]),
},
}));
let mut computed_preds: FxHashSet<_> = param_env.caller_bounds.iter().cloned().collect();
let mut user_computed_preds: FxHashSet<_> =
user_env.caller_bounds.iter().cloned().collect();
let mut new_env = param_env.clone();
let dummy_cause = ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID);
while let Some(pred) = predicates.pop_front() {
infcx.clear_caches();
if !already_visited.insert(pred.clone()) {
continue;
}
let result = select.select(&Obligation::new(dummy_cause.clone(), new_env, pred));
match &result {
&Ok(Some(ref vtable)) => {
let obligations = vtable.clone().nested_obligations().into_iter();
if !self.evaluate_nested_obligations(
ty,
obligations,
&mut user_computed_preds,
fresh_preds,
&mut predicates,
&mut select,
only_projections,
) {
return None;
}
}
&Ok(None) => {}
&Err(SelectionError::Unimplemented) => {
if self.is_of_param(pred.skip_binder().trait_ref.substs) {
already_visited.remove(&pred);
user_computed_preds.insert(ty::Predicate::Trait(pred.clone()));
predicates.push_back(pred);
} else {
debug!(
"evaluate_nested_obligations: Unimplemented found, bailing: {:?} {:?} \
{:?}",
ty,
pred,
pred.skip_binder().trait_ref.substs
);
return None;
}
}
_ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
};
computed_preds.extend(user_computed_preds.iter().cloned());
let normalized_preds =
traits::elaborate_predicates(tcx, computed_preds.clone().into_iter().collect());
new_env = ty::ParamEnv::new(
tcx.mk_predicates(normalized_preds),
param_env.reveal,
ty::UniverseIndex::ROOT,
);
}
let final_user_env = ty::ParamEnv::new(
tcx.mk_predicates(user_computed_preds.into_iter()),
user_env.reveal,
ty::UniverseIndex::ROOT,
);
debug!(
"evaluate_nested_obligations(ty_did={:?}, trait_did={:?}): succeeded with '{:?}' \
'{:?}'",
ty_did, trait_did, new_env, final_user_env
);
return Some((new_env, final_user_env));
}
fn is_of_param(&self, substs: &Substs) -> bool {
if substs.is_noop() {
return false;
}
return match substs.type_at(0).sty {
ty::TyParam(_) => true,
ty::TyProjection(p) => self.is_of_param(p.substs),
_ => false,
};
}
fn get_lifetime(&self, region: Region, names_map: &FxHashMap<String, Lifetime>) -> Lifetime {
self.region_name(region)
.map(|name| {
names_map.get(&name).unwrap_or_else(|| {
panic!("Missing lifetime with name {:?} for {:?}", name, region)
})
})
.unwrap_or(&Lifetime::statik())
.clone()
}
fn region_name(&self, region: Region) -> Option<String> {
match region {
&ty::ReEarlyBound(r) => Some(r.name.as_str().to_string()),
_ => None,
}
}
// This is very similar to handle_lifetimes. However, instead of matching ty::Region's
// to each other, we match ty::RegionVid's to ty::Region's
fn map_vid_to_region<'cx>(
&self,
regions: &RegionConstraintData<'cx>,
) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap();
let mut finished_map = FxHashMap();
for constraint in regions.constraints.keys() {
match constraint {
&Constraint::VarSubVar(r1, r2) => {
{
let deps1 = vid_map
.entry(RegionTarget::RegionVid(r1))
.or_insert_with(|| Default::default());
deps1.larger.insert(RegionTarget::RegionVid(r2));
}
let deps2 = vid_map
.entry(RegionTarget::RegionVid(r2))
.or_insert_with(|| Default::default());
deps2.smaller.insert(RegionTarget::RegionVid(r1));
}
&Constraint::RegSubVar(region, vid) => {
{
let deps1 = vid_map
.entry(RegionTarget::Region(region))
.or_insert_with(|| Default::default());
deps1.larger.insert(RegionTarget::RegionVid(vid));
}
let deps2 = vid_map
.entry(RegionTarget::RegionVid(vid))
.or_insert_with(|| Default::default());
deps2.smaller.insert(RegionTarget::Region(region));
}
&Constraint::VarSubReg(vid, region) => {
finished_map.insert(vid, region);
}
&Constraint::RegSubReg(r1, r2) => {
{
let deps1 = vid_map
.entry(RegionTarget::Region(r1))
.or_insert_with(|| Default::default());
deps1.larger.insert(RegionTarget::Region(r2));
}
let deps2 = vid_map
.entry(RegionTarget::Region(r2))
.or_insert_with(|| Default::default());
deps2.smaller.insert(RegionTarget::Region(r1));
}
}
}
while !vid_map.is_empty() {
let target = vid_map.keys().next().expect("Keys somehow empty").clone();
let deps = vid_map.remove(&target).expect("Entry somehow missing");
for smaller in deps.smaller.iter() {
for larger in deps.larger.iter() {
match (smaller, larger) {
(&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let larger_deps = v.into_mut();
larger_deps.smaller.insert(*smaller);
larger_deps.smaller.remove(&target);
}
}
(&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
finished_map.insert(v1, r1);
}
(&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
// Do nothing - we don't care about regions that are smaller than vids
}
(&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let larger_deps = v.into_mut();
larger_deps.smaller.insert(*smaller);
larger_deps.smaller.remove(&target);
}
}
}
}
}
}
finished_map
}
// This method calculates two things: Lifetime constraints of the form 'a: 'b,
// and region constraints of the form ReVar: 'a
//
// This is essentially a simplified version of lexical_region_resolve. However,
// handle_lifetimes determines what *needs be* true in order for an impl to hold.
// lexical_region_resolve, along with much of the rest of the compiler, is concerned
// with determining if a given set up constraints/predicates *are* met, given some
// starting conditions (e.g. user-provided code). For this reason, it's easier
// to perform the calculations we need on our own, rather than trying to make
// existing inference/solver code do what we want.
fn handle_lifetimes<'cx>(
&self,
regions: &RegionConstraintData<'cx>,
names_map: &FxHashMap<String, Lifetime>,
) -> Vec<WherePredicate> {
// Our goal is to 'flatten' the list of constraints by eliminating
// all intermediate RegionVids. At the end, all constraints should
// be between Regions (aka region variables). This gives us the information
// we need to create the Generics.
let mut finished = FxHashMap();
let mut vid_map: FxHashMap<RegionTarget, RegionDeps> = FxHashMap();
// Flattening is done in two parts. First, we insert all of the constraints
// into a map. Each RegionTarget (either a RegionVid or a Region) maps
// to its smaller and larger regions. Note that 'larger' regions correspond
// to sub-regions in Rust code (e.g. in 'a: 'b, 'a is the larger region).
for constraint in regions.constraints.keys() {
match constraint {
&Constraint::VarSubVar(r1, r2) => {
{
let deps1 = vid_map
.entry(RegionTarget::RegionVid(r1))
.or_insert_with(|| Default::default());
deps1.larger.insert(RegionTarget::RegionVid(r2));
}
let deps2 = vid_map
.entry(RegionTarget::RegionVid(r2))
.or_insert_with(|| Default::default());
deps2.smaller.insert(RegionTarget::RegionVid(r1));
}
&Constraint::RegSubVar(region, vid) => {
let deps = vid_map
.entry(RegionTarget::RegionVid(vid))
.or_insert_with(|| Default::default());
deps.smaller.insert(RegionTarget::Region(region));
}
&Constraint::VarSubReg(vid, region) => {
let deps = vid_map
.entry(RegionTarget::RegionVid(vid))
.or_insert_with(|| Default::default());
deps.larger.insert(RegionTarget::Region(region));
}
&Constraint::RegSubReg(r1, r2) => {
// The constraint is already in the form that we want, so we're done with it
// Desired order is 'larger, smaller', so flip then
if self.region_name(r1) != self.region_name(r2) {
finished
.entry(self.region_name(r2).unwrap())
.or_insert_with(|| Vec::new())
.push(r1);
}
}
}
}
// Here, we 'flatten' the map one element at a time.
// All of the element's sub and super regions are connected
// to each other. For example, if we have a graph that looks like this:
//
// (A, B) - C - (D, E)
// Where (A, B) are subregions, and (D,E) are super-regions
//
// then after deleting 'C', the graph will look like this:
// ... - A - (D, E ...)
// ... - B - (D, E, ...)
// (A, B, ...) - D - ...
// (A, B, ...) - E - ...
//
// where '...' signifies the existing sub and super regions of an entry
// When two adjacent ty::Regions are encountered, we've computed a final
// constraint, and add it to our list. Since we make sure to never re-add
// deleted items, this process will always finish.
while !vid_map.is_empty() {
let target = vid_map.keys().next().expect("Keys somehow empty").clone();
let deps = vid_map.remove(&target).expect("Entry somehow missing");
for smaller in deps.smaller.iter() {
for larger in deps.larger.iter() {
match (smaller, larger) {
(&RegionTarget::Region(r1), &RegionTarget::Region(r2)) => {
if self.region_name(r1) != self.region_name(r2) {
finished
.entry(self.region_name(r2).unwrap())
.or_insert_with(|| Vec::new())
.push(r1) // Larger, smaller
}
}
(&RegionTarget::RegionVid(_), &RegionTarget::Region(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
}
(&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let deps = v.into_mut();
deps.smaller.insert(*smaller);
deps.smaller.remove(&target);
}
}
(&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let larger_deps = v.into_mut();
larger_deps.smaller.insert(*smaller);
larger_deps.smaller.remove(&target);
}
}
}
}
}
}
let lifetime_predicates = names_map
.iter()
.flat_map(|(name, lifetime)| {
let empty = Vec::new();
let bounds: FxHashSet<Lifetime> = finished
.get(name)
.unwrap_or(&empty)
.iter()
.map(|region| self.get_lifetime(region, names_map))
.collect();
if bounds.is_empty() {
return None;
}
Some(WherePredicate::RegionPredicate {
lifetime: lifetime.clone(),
bounds: bounds.into_iter().collect(),
})
})
.collect();
lifetime_predicates
}
fn extract_for_generics<'b, 'c, 'd>(
&self,
tcx: TyCtxt<'b, 'c, 'd>,
pred: ty::Predicate<'d>,
) -> FxHashSet<GenericParam> {
pred.walk_tys()
.flat_map(|t| {
let mut regions = FxHashSet();
tcx.collect_regions(&t, &mut regions);