-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathrc.rs
2115 lines (1972 loc) · 66.2 KB
/
rc.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Single-threaded reference-counting pointers. 'Rc' stands for 'Reference
//! Counted'.
//!
//! The type [`Rc<T>`][`Rc`] provides shared ownership of a value of type `T`,
//! allocated in the heap. Invoking [`clone`][clone] on [`Rc`] produces a new
//! pointer to the same allocation in the heap. When the last [`Rc`] pointer to a
//! given allocation is destroyed, the value stored in that allocation (often
//! referred to as "inner value") is also dropped.
//!
//! Shared references in Rust disallow mutation by default, and [`Rc`]
//! is no exception: you cannot generally obtain a mutable reference to
//! something inside an [`Rc`]. If you need mutability, put a [`Cell`]
//! or [`RefCell`] inside the [`Rc`]; see [an example of mutability
//! inside an Rc][mutability].
//!
//! [`Rc`] uses non-atomic reference counting. This means that overhead is very
//! low, but an [`Rc`] cannot be sent between threads, and consequently [`Rc`]
//! does not implement [`Send`][send]. As a result, the Rust compiler
//! will check *at compile time* that you are not sending [`Rc`]s between
//! threads. If you need multi-threaded, atomic reference counting, use
//! [`sync::Arc`][arc].
//!
//! The [`downgrade`][downgrade] method can be used to create a non-owning
//! [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
//! to an [`Rc`], but this will return [`None`] if the value stored in the allocation has
//! already been dropped. In other words, `Weak` pointers do not keep the value
//! inside the allocation alive; however, they *do* keep the allocation
//! (the backing store for the inner value) alive.
//!
//! A cycle between [`Rc`] pointers will never be deallocated. For this reason,
//! [`Weak`] is used to break cycles. For example, a tree could have strong
//! [`Rc`] pointers from parent nodes to children, and [`Weak`] pointers from
//! children back to their parents.
//!
//! `Rc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
//! so you can call `T`'s methods on a value of type [`Rc<T>`][`Rc`]. To avoid name
//! clashes with `T`'s methods, the methods of [`Rc<T>`][`Rc`] itself are associated
//! functions, called using function-like syntax:
//!
//! ```
//! use std::rc::Rc;
//! let my_rc = Rc::new(());
//!
//! Rc::downgrade(&my_rc);
//! ```
//!
//! [`Weak<T>`][`Weak`] does not auto-dereference to `T`, because the inner value may have
//! already been dropped.
//!
//! # Cloning references
//!
//! Creating a new reference to the same allocation as an existing reference counted pointer
//! is done using the `Clone` trait implemented for [`Rc<T>`][`Rc`] and [`Weak<T>`][`Weak`].
//!
//! ```
//! use std::rc::Rc;
//! let foo = Rc::new(vec![1.0, 2.0, 3.0]);
//! // The two syntaxes below are equivalent.
//! let a = foo.clone();
//! let b = Rc::clone(&foo);
//! // a and b both point to the same memory location as foo.
//! ```
//!
//! The `Rc::clone(&from)` syntax is the most idiomatic because it conveys more explicitly
//! the meaning of the code. In the example above, this syntax makes it easier to see that
//! this code is creating a new reference rather than copying the whole content of foo.
//!
//! # Examples
//!
//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
//! unique ownership, because more than one gadget may belong to the same
//! `Owner`. [`Rc`] allows us to share an `Owner` between multiple `Gadget`s,
//! and have the `Owner` remain allocated as long as any `Gadget` points at it.
//!
//! ```
//! use std::rc::Rc;
//!
//! struct Owner {
//! name: String,
//! // ...other fields
//! }
//!
//! struct Gadget {
//! id: i32,
//! owner: Rc<Owner>,
//! // ...other fields
//! }
//!
//! fn main() {
//! // Create a reference-counted `Owner`.
//! let gadget_owner: Rc<Owner> = Rc::new(
//! Owner {
//! name: "Gadget Man".to_string(),
//! }
//! );
//!
//! // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc<Owner>`
//! // gives us a new pointer to the same `Owner` allocation, incrementing
//! // the reference count in the process.
//! let gadget1 = Gadget {
//! id: 1,
//! owner: Rc::clone(&gadget_owner),
//! };
//! let gadget2 = Gadget {
//! id: 2,
//! owner: Rc::clone(&gadget_owner),
//! };
//!
//! // Dispose of our local variable `gadget_owner`.
//! drop(gadget_owner);
//!
//! // Despite dropping `gadget_owner`, we're still able to print out the name
//! // of the `Owner` of the `Gadget`s. This is because we've only dropped a
//! // single `Rc<Owner>`, not the `Owner` it points to. As long as there are
//! // other `Rc<Owner>` pointing at the same `Owner` allocation, it will remain
//! // live. The field projection `gadget1.owner.name` works because
//! // `Rc<Owner>` automatically dereferences to `Owner`.
//! println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
//! println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
//!
//! // At the end of the function, `gadget1` and `gadget2` are destroyed, and
//! // with them the last counted references to our `Owner`. Gadget Man now
//! // gets destroyed as well.
//! }
//! ```
//!
//! If our requirements change, and we also need to be able to traverse from
//! `Owner` to `Gadget`, we will run into problems. An [`Rc`] pointer from `Owner`
//! to `Gadget` introduces a cycle. This means that their
//! reference counts can never reach 0, and the allocation will never be destroyed:
//! a memory leak. In order to get around this, we can use [`Weak`]
//! pointers.
//!
//! Rust actually makes it somewhat difficult to produce this loop in the first
//! place. In order to end up with two values that point at each other, one of
//! them needs to be mutable. This is difficult because [`Rc`] enforces
//! memory safety by only giving out shared references to the value it wraps,
//! and these don't allow direct mutation. We need to wrap the part of the
//! value we wish to mutate in a [`RefCell`], which provides *interior
//! mutability*: a method to achieve mutability through a shared reference.
//! [`RefCell`] enforces Rust's borrowing rules at runtime.
//!
//! ```
//! use std::rc::Rc;
//! use std::rc::Weak;
//! use std::cell::RefCell;
//!
//! struct Owner {
//! name: String,
//! gadgets: RefCell<Vec<Weak<Gadget>>>,
//! // ...other fields
//! }
//!
//! struct Gadget {
//! id: i32,
//! owner: Rc<Owner>,
//! // ...other fields
//! }
//!
//! fn main() {
//! // Create a reference-counted `Owner`. Note that we've put the `Owner`'s
//! // vector of `Gadget`s inside a `RefCell` so that we can mutate it through
//! // a shared reference.
//! let gadget_owner: Rc<Owner> = Rc::new(
//! Owner {
//! name: "Gadget Man".to_string(),
//! gadgets: RefCell::new(vec![]),
//! }
//! );
//!
//! // Create `Gadget`s belonging to `gadget_owner`, as before.
//! let gadget1 = Rc::new(
//! Gadget {
//! id: 1,
//! owner: Rc::clone(&gadget_owner),
//! }
//! );
//! let gadget2 = Rc::new(
//! Gadget {
//! id: 2,
//! owner: Rc::clone(&gadget_owner),
//! }
//! );
//!
//! // Add the `Gadget`s to their `Owner`.
//! {
//! let mut gadgets = gadget_owner.gadgets.borrow_mut();
//! gadgets.push(Rc::downgrade(&gadget1));
//! gadgets.push(Rc::downgrade(&gadget2));
//!
//! // `RefCell` dynamic borrow ends here.
//! }
//!
//! // Iterate over our `Gadget`s, printing their details out.
//! for gadget_weak in gadget_owner.gadgets.borrow().iter() {
//!
//! // `gadget_weak` is a `Weak<Gadget>`. Since `Weak` pointers can't
//! // guarantee the allocation still exists, we need to call
//! // `upgrade`, which returns an `Option<Rc<Gadget>>`.
//! //
//! // In this case we know the allocation still exists, so we simply
//! // `unwrap` the `Option`. In a more complicated program, you might
//! // need graceful error handling for a `None` result.
//!
//! let gadget = gadget_weak.upgrade().unwrap();
//! println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
//! }
//!
//! // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2`
//! // are destroyed. There are now no strong (`Rc`) pointers to the
//! // gadgets, so they are destroyed. This zeroes the reference count on
//! // Gadget Man, so he gets destroyed as well.
//! }
//! ```
//!
//! [`Rc`]: struct.Rc.html
//! [`Weak`]: struct.Weak.html
//! [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
//! [`Cell`]: ../../std/cell/struct.Cell.html
//! [`RefCell`]: ../../std/cell/struct.RefCell.html
//! [send]: ../../std/marker/trait.Send.html
//! [arc]: ../../std/sync/struct.Arc.html
//! [`Deref`]: ../../std/ops/trait.Deref.html
//! [downgrade]: struct.Rc.html#method.downgrade
//! [upgrade]: struct.Weak.html#method.upgrade
//! [`None`]: ../../std/option/enum.Option.html#variant.None
//! [mutability]: ../../std/cell/index.html#introducing-mutability-inside-of-something-immutable
#![stable(feature = "rust1", since = "1.0.0")]
#[cfg(not(test))]
use crate::boxed::Box;
#[cfg(test)]
use std::boxed::Box;
use core::any::Any;
use core::array::LengthAtMost32;
use core::borrow;
use core::cell::Cell;
use core::cmp::Ordering;
use core::convert::{From, TryFrom};
use core::fmt;
use core::hash::{Hash, Hasher};
use core::intrinsics::abort;
use core::iter;
use core::marker::{self, PhantomData, Unpin, Unsize};
use core::mem::{self, align_of, align_of_val, forget, size_of_val};
use core::ops::{CoerceUnsized, Deref, DispatchFromDyn, Receiver};
use core::pin::Pin;
use core::ptr::{self, NonNull};
use core::slice::{self, from_raw_parts_mut};
use crate::alloc::{box_free, handle_alloc_error, AllocInit, AllocRef, Global, Layout};
use crate::string::String;
use crate::vec::Vec;
#[cfg(test)]
mod tests;
// This is repr(C) to future-proof against possible field-reordering, which
// would interfere with otherwise safe [into|from]_raw() of transmutable
// inner types.
#[repr(C)]
struct RcBox<T: ?Sized> {
strong: Cell<usize>,
weak: Cell<usize>,
value: T,
}
/// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference
/// Counted'.
///
/// See the [module-level documentation](./index.html) for more details.
///
/// The inherent methods of `Rc` are all associated functions, which means
/// that you have to call them as e.g., [`Rc::get_mut(&mut value)`][get_mut] instead of
/// `value.get_mut()`. This avoids conflicts with methods of the inner
/// type `T`.
///
/// [get_mut]: #method.get_mut
#[cfg_attr(all(bootstrap, not(test)), lang = "rc")]
#[cfg_attr(not(test), rustc_diagnostic_item = "Rc")]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Rc<T: ?Sized> {
ptr: NonNull<RcBox<T>>,
phantom: PhantomData<RcBox<T>>,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !marker::Send for Rc<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !marker::Sync for Rc<T> {}
#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Rc<U>> for Rc<T> {}
#[unstable(feature = "dispatch_from_dyn", issue = "none")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Rc<U>> for Rc<T> {}
impl<T: ?Sized> Rc<T> {
fn from_inner(ptr: NonNull<RcBox<T>>) -> Self {
Self { ptr, phantom: PhantomData }
}
unsafe fn from_ptr(ptr: *mut RcBox<T>) -> Self {
Self::from_inner(NonNull::new_unchecked(ptr))
}
}
impl<T> Rc<T> {
/// Constructs a new `Rc<T>`.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new(value: T) -> Rc<T> {
// There is an implicit weak pointer owned by all the strong
// pointers, which ensures that the weak destructor never frees
// the allocation while the strong destructor is running, even
// if the weak pointer is stored inside the strong one.
Self::from_inner(Box::into_raw_non_null(box RcBox {
strong: Cell::new(1),
weak: Cell::new(1),
value,
}))
}
/// Constructs a new `Rc` with uninitialized contents.
///
/// # Examples
///
/// ```
/// #![feature(new_uninit)]
/// #![feature(get_mut_unchecked)]
///
/// use std::rc::Rc;
///
/// let mut five = Rc::<u32>::new_uninit();
///
/// let five = unsafe {
/// // Deferred initialization:
/// Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
///
/// five.assume_init()
/// };
///
/// assert_eq!(*five, 5)
/// ```
#[unstable(feature = "new_uninit", issue = "63291")]
pub fn new_uninit() -> Rc<mem::MaybeUninit<T>> {
unsafe {
Rc::from_ptr(Rc::allocate_for_layout(Layout::new::<T>(), |mem| {
mem as *mut RcBox<mem::MaybeUninit<T>>
}))
}
}
/// Constructs a new `Rc` with uninitialized contents, with the memory
/// being filled with `0` bytes.
///
/// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
/// incorrect usage of this method.
///
/// # Examples
///
/// ```
/// #![feature(new_uninit)]
///
/// use std::rc::Rc;
///
/// let zero = Rc::<u32>::new_zeroed();
/// let zero = unsafe { zero.assume_init() };
///
/// assert_eq!(*zero, 0)
/// ```
///
/// [zeroed]: ../../std/mem/union.MaybeUninit.html#method.zeroed
#[unstable(feature = "new_uninit", issue = "63291")]
pub fn new_zeroed() -> Rc<mem::MaybeUninit<T>> {
unsafe {
let mut uninit = Self::new_uninit();
ptr::write_bytes::<T>(Rc::get_mut_unchecked(&mut uninit).as_mut_ptr(), 0, 1);
uninit
}
}
/// Constructs a new `Pin<Rc<T>>`. If `T` does not implement `Unpin`, then
/// `value` will be pinned in memory and unable to be moved.
#[stable(feature = "pin", since = "1.33.0")]
pub fn pin(value: T) -> Pin<Rc<T>> {
unsafe { Pin::new_unchecked(Rc::new(value)) }
}
/// Returns the inner value, if the `Rc` has exactly one strong reference.
///
/// Otherwise, an [`Err`][result] is returned with the same `Rc` that was
/// passed in.
///
/// This will succeed even if there are outstanding weak references.
///
/// [result]: ../../std/result/enum.Result.html
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let x = Rc::new(3);
/// assert_eq!(Rc::try_unwrap(x), Ok(3));
///
/// let x = Rc::new(4);
/// let _y = Rc::clone(&x);
/// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4);
/// ```
#[inline]
#[stable(feature = "rc_unique", since = "1.4.0")]
pub fn try_unwrap(this: Self) -> Result<T, Self> {
if Rc::strong_count(&this) == 1 {
unsafe {
let val = ptr::read(&*this); // copy the contained object
// Indicate to Weaks that they can't be promoted by decrementing
// the strong count, and then remove the implicit "strong weak"
// pointer while also handling drop logic by just crafting a
// fake Weak.
this.dec_strong();
let _weak = Weak { ptr: this.ptr };
forget(this);
Ok(val)
}
} else {
Err(this)
}
}
}
impl<T> Rc<[T]> {
/// Constructs a new reference-counted slice with uninitialized contents.
///
/// # Examples
///
/// ```
/// #![feature(new_uninit)]
/// #![feature(get_mut_unchecked)]
///
/// use std::rc::Rc;
///
/// let mut values = Rc::<[u32]>::new_uninit_slice(3);
///
/// let values = unsafe {
/// // Deferred initialization:
/// Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
/// Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
/// Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
///
/// values.assume_init()
/// };
///
/// assert_eq!(*values, [1, 2, 3])
/// ```
#[unstable(feature = "new_uninit", issue = "63291")]
pub fn new_uninit_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
unsafe { Rc::from_ptr(Rc::allocate_for_slice(len)) }
}
}
impl<T> Rc<mem::MaybeUninit<T>> {
/// Converts to `Rc<T>`.
///
/// # Safety
///
/// As with [`MaybeUninit::assume_init`],
/// it is up to the caller to guarantee that the inner value
/// really is in an initialized state.
/// Calling this when the content is not yet fully initialized
/// causes immediate undefined behavior.
///
/// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
///
/// # Examples
///
/// ```
/// #![feature(new_uninit)]
/// #![feature(get_mut_unchecked)]
///
/// use std::rc::Rc;
///
/// let mut five = Rc::<u32>::new_uninit();
///
/// let five = unsafe {
/// // Deferred initialization:
/// Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
///
/// five.assume_init()
/// };
///
/// assert_eq!(*five, 5)
/// ```
#[unstable(feature = "new_uninit", issue = "63291")]
#[inline]
pub unsafe fn assume_init(self) -> Rc<T> {
Rc::from_inner(mem::ManuallyDrop::new(self).ptr.cast())
}
}
impl<T> Rc<[mem::MaybeUninit<T>]> {
/// Converts to `Rc<[T]>`.
///
/// # Safety
///
/// As with [`MaybeUninit::assume_init`],
/// it is up to the caller to guarantee that the inner value
/// really is in an initialized state.
/// Calling this when the content is not yet fully initialized
/// causes immediate undefined behavior.
///
/// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
///
/// # Examples
///
/// ```
/// #![feature(new_uninit)]
/// #![feature(get_mut_unchecked)]
///
/// use std::rc::Rc;
///
/// let mut values = Rc::<[u32]>::new_uninit_slice(3);
///
/// let values = unsafe {
/// // Deferred initialization:
/// Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
/// Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
/// Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
///
/// values.assume_init()
/// };
///
/// assert_eq!(*values, [1, 2, 3])
/// ```
#[unstable(feature = "new_uninit", issue = "63291")]
#[inline]
pub unsafe fn assume_init(self) -> Rc<[T]> {
Rc::from_ptr(mem::ManuallyDrop::new(self).ptr.as_ptr() as _)
}
}
impl<T: ?Sized> Rc<T> {
/// Consumes the `Rc`, returning the wrapped pointer.
///
/// To avoid a memory leak the pointer must be converted back to an `Rc` using
/// [`Rc::from_raw`][from_raw].
///
/// [from_raw]: struct.Rc.html#method.from_raw
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let x = Rc::new("hello".to_owned());
/// let x_ptr = Rc::into_raw(x);
/// assert_eq!(unsafe { &*x_ptr }, "hello");
/// ```
#[stable(feature = "rc_raw", since = "1.17.0")]
pub fn into_raw(this: Self) -> *const T {
let ptr: *mut RcBox<T> = NonNull::as_ptr(this.ptr);
let fake_ptr = ptr as *mut T;
mem::forget(this);
// SAFETY: This cannot go through Deref::deref.
// Instead, we manually offset the pointer rather than manifesting a reference.
// This is so that the returned pointer retains the same provenance as our pointer.
// This is required so that e.g. `get_mut` can write through the pointer
// after the Rc is recovered through `from_raw`.
unsafe {
let offset = data_offset(&(*ptr).value);
set_data_ptr(fake_ptr, (ptr as *mut u8).offset(offset))
}
}
/// Constructs an `Rc<T>` from a raw pointer.
///
/// The raw pointer must have been previously returned by a call to
/// [`Rc<U>::into_raw`][into_raw] where `U` must have the same size
/// and alignment as `T`. This is trivially true if `U` is `T`.
/// Note that if `U` is not `T` but has the same size and alignment, this is
/// basically like transmuting references of different types. See
/// [`mem::transmute`][transmute] for more information on what
/// restrictions apply in this case.
///
/// The user of `from_raw` has to make sure a specific value of `T` is only
/// dropped once.
///
/// This function is unsafe because improper use may lead to memory unsafety,
/// even if the returned `Rc<T>` is never accessed.
///
/// [into_raw]: struct.Rc.html#method.into_raw
/// [transmute]: ../../std/mem/fn.transmute.html
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let x = Rc::new("hello".to_owned());
/// let x_ptr = Rc::into_raw(x);
///
/// unsafe {
/// // Convert back to an `Rc` to prevent leak.
/// let x = Rc::from_raw(x_ptr);
/// assert_eq!(&*x, "hello");
///
/// // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
/// }
///
/// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
/// ```
#[stable(feature = "rc_raw", since = "1.17.0")]
pub unsafe fn from_raw(ptr: *const T) -> Self {
let offset = data_offset(ptr);
// Reverse the offset to find the original RcBox.
let fake_ptr = ptr as *mut RcBox<T>;
let rc_ptr = set_data_ptr(fake_ptr, (ptr as *mut u8).offset(-offset));
Self::from_ptr(rc_ptr)
}
/// Consumes the `Rc`, returning the wrapped pointer as `NonNull<T>`.
///
/// # Examples
///
/// ```
/// #![feature(rc_into_raw_non_null)]
///
/// use std::rc::Rc;
///
/// let x = Rc::new("hello".to_owned());
/// let ptr = Rc::into_raw_non_null(x);
/// let deref = unsafe { ptr.as_ref() };
/// assert_eq!(deref, "hello");
/// ```
#[unstable(feature = "rc_into_raw_non_null", issue = "47336")]
#[inline]
pub fn into_raw_non_null(this: Self) -> NonNull<T> {
// safe because Rc guarantees its pointer is non-null
unsafe { NonNull::new_unchecked(Rc::into_raw(this) as *mut _) }
}
/// Creates a new [`Weak`][weak] pointer to this allocation.
///
/// [weak]: struct.Weak.html
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
///
/// let weak_five = Rc::downgrade(&five);
/// ```
#[stable(feature = "rc_weak", since = "1.4.0")]
pub fn downgrade(this: &Self) -> Weak<T> {
this.inc_weak();
// Make sure we do not create a dangling Weak
debug_assert!(!is_dangling(this.ptr));
Weak { ptr: this.ptr }
}
/// Gets the number of [`Weak`][weak] pointers to this allocation.
///
/// [weak]: struct.Weak.html
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
/// let _weak_five = Rc::downgrade(&five);
///
/// assert_eq!(1, Rc::weak_count(&five));
/// ```
#[inline]
#[stable(feature = "rc_counts", since = "1.15.0")]
pub fn weak_count(this: &Self) -> usize {
this.weak() - 1
}
/// Gets the number of strong (`Rc`) pointers to this allocation.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
/// let _also_five = Rc::clone(&five);
///
/// assert_eq!(2, Rc::strong_count(&five));
/// ```
#[inline]
#[stable(feature = "rc_counts", since = "1.15.0")]
pub fn strong_count(this: &Self) -> usize {
this.strong()
}
/// Returns `true` if there are no other `Rc` or [`Weak`][weak] pointers to
/// this allocation.
///
/// [weak]: struct.Weak.html
#[inline]
fn is_unique(this: &Self) -> bool {
Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1
}
/// Returns a mutable reference into the given `Rc`, if there are
/// no other `Rc` or [`Weak`][weak] pointers to the same allocation.
///
/// Returns [`None`] otherwise, because it is not safe to
/// mutate a shared value.
///
/// See also [`make_mut`][make_mut], which will [`clone`][clone]
/// the inner value when there are other pointers.
///
/// [weak]: struct.Weak.html
/// [`None`]: ../../std/option/enum.Option.html#variant.None
/// [make_mut]: struct.Rc.html#method.make_mut
/// [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let mut x = Rc::new(3);
/// *Rc::get_mut(&mut x).unwrap() = 4;
/// assert_eq!(*x, 4);
///
/// let _y = Rc::clone(&x);
/// assert!(Rc::get_mut(&mut x).is_none());
/// ```
#[inline]
#[stable(feature = "rc_unique", since = "1.4.0")]
pub fn get_mut(this: &mut Self) -> Option<&mut T> {
if Rc::is_unique(this) { unsafe { Some(Rc::get_mut_unchecked(this)) } } else { None }
}
/// Returns a mutable reference into the given `Rc`,
/// without any check.
///
/// See also [`get_mut`], which is safe and does appropriate checks.
///
/// [`get_mut`]: struct.Rc.html#method.get_mut
///
/// # Safety
///
/// Any other `Rc` or [`Weak`] pointers to the same allocation must not be dereferenced
/// for the duration of the returned borrow.
/// This is trivially the case if no such pointers exist,
/// for example immediately after `Rc::new`.
///
/// # Examples
///
/// ```
/// #![feature(get_mut_unchecked)]
///
/// use std::rc::Rc;
///
/// let mut x = Rc::new(String::new());
/// unsafe {
/// Rc::get_mut_unchecked(&mut x).push_str("foo")
/// }
/// assert_eq!(*x, "foo");
/// ```
#[inline]
#[unstable(feature = "get_mut_unchecked", issue = "63292")]
pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
&mut this.ptr.as_mut().value
}
#[inline]
#[stable(feature = "ptr_eq", since = "1.17.0")]
/// Returns `true` if the two `Rc`s point to the same allocation
/// (in a vein similar to [`ptr::eq`]).
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let five = Rc::new(5);
/// let same_five = Rc::clone(&five);
/// let other_five = Rc::new(5);
///
/// assert!(Rc::ptr_eq(&five, &same_five));
/// assert!(!Rc::ptr_eq(&five, &other_five));
/// ```
///
/// [`ptr::eq`]: ../../std/ptr/fn.eq.html
pub fn ptr_eq(this: &Self, other: &Self) -> bool {
this.ptr.as_ptr() == other.ptr.as_ptr()
}
}
impl<T: Clone> Rc<T> {
/// Makes a mutable reference into the given `Rc`.
///
/// If there are other `Rc` pointers to the same allocation, then `make_mut` will
/// [`clone`] the inner value to a new allocation to ensure unique ownership. This is also
/// referred to as clone-on-write.
///
/// If there are no other `Rc` pointers to this allocation, then [`Weak`]
/// pointers to this allocation will be disassociated.
///
/// See also [`get_mut`], which will fail rather than cloning.
///
/// [`Weak`]: struct.Weak.html
/// [`clone`]: ../../std/clone/trait.Clone.html#tymethod.clone
/// [`get_mut`]: struct.Rc.html#method.get_mut
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
///
/// let mut data = Rc::new(5);
///
/// *Rc::make_mut(&mut data) += 1; // Won't clone anything
/// let mut other_data = Rc::clone(&data); // Won't clone inner data
/// *Rc::make_mut(&mut data) += 1; // Clones inner data
/// *Rc::make_mut(&mut data) += 1; // Won't clone anything
/// *Rc::make_mut(&mut other_data) *= 2; // Won't clone anything
///
/// // Now `data` and `other_data` point to different allocations.
/// assert_eq!(*data, 8);
/// assert_eq!(*other_data, 12);
/// ```
///
/// [`Weak`] pointers will be disassociated:
///
/// ```
/// use std::rc::Rc;
///
/// let mut data = Rc::new(75);
/// let weak = Rc::downgrade(&data);
///
/// assert!(75 == *data);
/// assert!(75 == *weak.upgrade().unwrap());
///
/// *Rc::make_mut(&mut data) += 1;
///
/// assert!(76 == *data);
/// assert!(weak.upgrade().is_none());
/// ```
#[inline]
#[stable(feature = "rc_unique", since = "1.4.0")]
pub fn make_mut(this: &mut Self) -> &mut T {
if Rc::strong_count(this) != 1 {
// Gotta clone the data, there are other Rcs
*this = Rc::new((**this).clone())
} else if Rc::weak_count(this) != 0 {
// Can just steal the data, all that's left is Weaks
unsafe {
let mut swap = Rc::new(ptr::read(&this.ptr.as_ref().value));
mem::swap(this, &mut swap);
swap.dec_strong();
// Remove implicit strong-weak ref (no need to craft a fake
// Weak here -- we know other Weaks can clean up for us)
swap.dec_weak();
forget(swap);
}
}
// This unsafety is ok because we're guaranteed that the pointer
// returned is the *only* pointer that will ever be returned to T. Our
// reference count is guaranteed to be 1 at this point, and we required
// the `Rc<T>` itself to be `mut`, so we're returning the only possible
// reference to the allocation.
unsafe { &mut this.ptr.as_mut().value }
}
}
impl Rc<dyn Any> {
#[inline]
#[stable(feature = "rc_downcast", since = "1.29.0")]
/// Attempt to downcast the `Rc<dyn Any>` to a concrete type.
///
/// # Examples
///
/// ```
/// use std::any::Any;
/// use std::rc::Rc;
///
/// fn print_if_string(value: Rc<dyn Any>) {
/// if let Ok(string) = value.downcast::<String>() {
/// println!("String ({}): {}", string.len(), string);
/// }
/// }
///
/// let my_string = "Hello World".to_string();
/// print_if_string(Rc::new(my_string));
/// print_if_string(Rc::new(0i8));
/// ```
pub fn downcast<T: Any>(self) -> Result<Rc<T>, Rc<dyn Any>> {
if (*self).is::<T>() {
let ptr = self.ptr.cast::<RcBox<T>>();
forget(self);
Ok(Rc::from_inner(ptr))
} else {
Err(self)
}
}
}
impl<T: ?Sized> Rc<T> {
/// Allocates an `RcBox<T>` with sufficient space for
/// a possibly-unsized inner value where the value has the layout provided.
///
/// The function `mem_to_rcbox` is called with the data pointer
/// and must return back a (potentially fat)-pointer for the `RcBox<T>`.
unsafe fn allocate_for_layout(
value_layout: Layout,
mem_to_rcbox: impl FnOnce(*mut u8) -> *mut RcBox<T>,
) -> *mut RcBox<T> {
// Calculate layout using the given value layout.
// Previously, layout was calculated on the expression
// `&*(ptr as *const RcBox<T>)`, but this created a misaligned
// reference (see #54908).
let layout = Layout::new::<RcBox<()>>().extend(value_layout).unwrap().0.pad_to_align();
// Allocate for the layout.
let mem = Global
.alloc(layout, AllocInit::Uninitialized)
.unwrap_or_else(|_| handle_alloc_error(layout));
// Initialize the RcBox
let inner = mem_to_rcbox(mem.ptr.as_ptr());
debug_assert_eq!(Layout::for_value(&*inner), layout);
ptr::write(&mut (*inner).strong, Cell::new(1));
ptr::write(&mut (*inner).weak, Cell::new(1));
inner
}
/// Allocates an `RcBox<T>` with sufficient space for an unsized inner value
unsafe fn allocate_for_ptr(ptr: *const T) -> *mut RcBox<T> {
// Allocate for the `RcBox<T>` using the given value.
Self::allocate_for_layout(Layout::for_value(&*ptr), |mem| {
set_data_ptr(ptr as *mut T, mem) as *mut RcBox<T>
})
}
fn from_box(v: Box<T>) -> Rc<T> {
unsafe {
let box_unique = Box::into_unique(v);
let bptr = box_unique.as_ptr();
let value_size = size_of_val(&*bptr);
let ptr = Self::allocate_for_ptr(bptr);
// Copy value as bytes
ptr::copy_nonoverlapping(
bptr as *const T as *const u8,
&mut (*ptr).value as *mut _ as *mut u8,
value_size,
);
// Free the allocation without dropping its contents
box_free(box_unique);
Self::from_ptr(ptr)
}
}
}
impl<T> Rc<[T]> {
/// Allocates an `RcBox<[T]>` with the given length.
unsafe fn allocate_for_slice(len: usize) -> *mut RcBox<[T]> {
Self::allocate_for_layout(Layout::array::<T>(len).unwrap(), |mem| {
ptr::slice_from_raw_parts_mut(mem as *mut T, len) as *mut RcBox<[T]>
})
}
}
/// Sets the data pointer of a `?Sized` raw pointer.
///
/// For a slice/trait object, this sets the `data` field and leaves the rest
/// unchanged. For a sized raw pointer, this simply sets the pointer.
unsafe fn set_data_ptr<T: ?Sized, U>(mut ptr: *mut T, data: *mut U) -> *mut T {
ptr::write(&mut ptr as *mut _ as *mut *mut u8, data as *mut u8);
ptr
}