-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathness.py
431 lines (356 loc) · 12.8 KB
/
ness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import numpy as np
import sympy as sy
# cohn approximation of insertion loss
def insertion_loss(g, bw, fo, qu):
db = 4.343 * fo / (qu * bw) * sum(g[1:-1])
return db
### for plotting
# return function fn(f, qu) which calculates the S11 group delay at f
# for lossy bandpass filters shorted at resonator n
def fn_groupdelay_tdqu(g, bw, fo, n):
f, w, wo, dw, wp, qu = sy.symbols("f w wo dw wp qu")
xin = lowpass_xin(g, wp, n)
WP = wo / dw * (w / wo - wo / w) - wo * sy.I / (qu * dw)
phi = -2 * sy.atan(xin / g[0])
GD = -sy.diff(WP, w) * sy.simplify(sy.diff(phi, wp)).subs(wp, WP)
GD = GD.subs(dw, 2 * sy.pi * bw) # sy.pi required
GD = GD.subs(wo, 2 * np.pi * fo) # np.pi required
GD = GD.subs(w, 2 * np.pi * f)
return sy.lambdify([ f, qu ], abs(GD), 'numpy')
# return function fn(f, qu) which calculates the Ness S11 values
# for lossy bandpass filters shorted at resonator n
def fn_groupdelay_maqu(g, bw, fo, n):
f, w, wo, dw, wp, qu = sy.symbols("f w wo dw wp qu")
xin = lowpass_xin(g, wp, n)
WP = wo / dw * (w / wo - wo / w) - wo * sy.I / (qu * dw)
xin = xin.subs(wp, WP)
s11 = (xin * sy.I - g[0]) / (xin * sy.I + g[0])
s11 = s11.subs(wo, 2 * sy.pi * fo)
s11 = s11.subs(dw, 2 * sy.pi * bw)
s11 = s11.subs(w, 2 * np.pi * f)
return sy.lambdify([ f, qu ], s11, 'numpy')
#######################
# miscellaneous
#######################
def db(x):
with np.errstate(divide='ignore'):
return 20 * np.log10(abs(x))
# calculate group delay at f using fn(f,qu)
# (used by nodal_delay_transmission and nodal_delay_bandwidth)
def groupdelay(fn, f, qu):
df = 1
a = np.angle(fn(f - df / 2, qu))
b = np.angle(fn(f + df / 2, qu))
d = np.unwrap(np.array([a, b]).T)
td = -np.diff(d).flatten() / (2 * np.pi * df)
return td[0] if np.isscalar(f) else td
# denormalize qk coefficients
def denormalize_qk(qk, bw, fo):
ql = fo / bw
QK = np.array(qk) * ql
QK[1:-1] = np.array(qk[1:-1]) / ql
return QK
# calculate lowpass prototype g values from qk coefficients
def prototype_qk(qk, g0=1):
g = np.zeros(len(qk)+1)
g[0] = g0
g[1] = qk[0] / g[0]
for i in range(1, len(g)-2):
g[i+1] = 1 / (qk[i]**2 * g[i])
g[-1] = qk[-1] / g[-2]
return g
# calculate qk coefficients from lowpass prototype g values
def coupling_g(g):
g = np.array(g)
qk = g[:-1] * g[1:]
qk[1:-1] = 1 / np.sqrt(g[1:-2] * g[2:-1])
return qk
def chebyshev(n, ripple):
print(n, ripple)
"""
From page 99 of Microwave Filters, Impedance-Maching
Networks, and Coupling Structures, by Matthaei, Young,
and Jones
"""
beta = np.log(1 / np.tanh(ripple / (40 / np.log(10))))
gamma = np.sinh(beta / (2 * n))
k = np.array([ n for n in range(1, n + 1) ])
A = np.sin((2 * k - 1) * np.pi / (2 * n))
B = gamma**2 + np.sin(k * np.pi / n)**2
g = np.ones(n + 2)
g[1] = 2 * A[0] / gamma
for i in range(2, n + 1):
g[i] = 4.0 * A[i-2] * A[i-1] / (B[i-2] * g[i-1])
if n % 2 == 0:
g[n+1] = 1 / np.tanh(beta / 4)**2
return g
#######################
# nodal
#######################
# compute the components of a top-coupled nodal filter
def nodal_filter(qk, bw, fo):
N = len(qk) - 1
QL = fo / bw
Q = np.array(qk[::N]) * QL
K = np.array(qk[1:-1]) / QL
# nodal resonators
wo = 2 * np.pi * fo
RE = 1
L0 = RE / (wo * Q)
L0 = np.concatenate((L0[0] * np.ones(N-1), L0[1:]))
CM = 1 / (wo**2 * L0)
# coupling capacitors
Z = 1 / (wo * np.sqrt(CM[:-1] * CM[1:]))
CK = K / (wo * Z)
CK = np.insert(np.zeros(2), 1, CK)
C0 = CM - CK[:-1] - CK[1:]
return L0, C0, CK[1:-1]
# return a function fn(f, qu) for calculating the S11 of a nodal filter
def fn_nodal_reflection(qk, bw, fo, re=1):
lp, cp, cs = nodal_filter(qk, bw, fo)
f, w, qu = sy.symbols('f w qu')
zin = re
for i in reversed(range(len(lp))):
zin = 1 / (sy.I * w * cp[i] +
1 / (sy.I * w * lp[i]) +
1 / (w * lp[i] * qu) +
1 / zin
)
if i > 0: zin += 1 / (sy.I * w * cs[i-1])
s11 = (zin - re) / (zin + re)
s11 = s11.subs(w, 2 * np.pi * f)
return sy.lambdify([f, qu], s11, 'numpy')
# return a function fn(f, qu) for calculating the S21 of a nodal filter
def fn_nodal_transmission(qk, fo, bw, re=1):
lp, cp, cs = nodal_filter(qk, fo, bw)
f, w, qu = sy.symbols('f w qu')
vin = 1
zin = re
n = len(lp) - 1
for i in range(n):
a = 1 / (sy.I * w * cp[i] +
1 / (sy.I * w * lp[i]) +
1 / (w * lp[i] * qu)
)
vin = vin * a / (a + zin)
zin = 1 / (1 / a + 1 / zin)
zin += 1 / (sy.I * w * cs[i])
a = 1 / (1 / re +
sy.I * w * cp[n] +
1 / (sy.I * w * lp[n]) +
1 / (w * lp[i] * qu)
)
s21 = 2 * vin * a / (zin + a)
s21 = s21.subs(w, 2 * np.pi * f)
return sy.lambdify([f, qu], s21, 'numpy')
# calculate the insertion loss of a filter at fo
def nodal_insertionloss(qk, bw, fo, qu):
fn = fn_nodal_transmission(qk, bw, fo)
return db(fn(fo, np.inf)) - db(fn(fo, qu))
# calculate the transmission group delay of a filter at fo
def nodal_delay_transmission(qk, bw, fo, qu):
fn = fn_nodal_transmission(qk, bw, fo)
return groupdelay(fn, fo, qu)
### approximations
# calculate the (approximate) minimum return loss of a filter
def nodal_returnloss(qk, bw, fo, qu, steps=10000):
fn = fn_nodal_reflection(qk, bw, fo)
f = np.linspace(fo - 2 * bw, fo + 2 * bw, steps)
ma = -db(fn(f, qu))
a = (np.diff(np.sign(np.diff(ma))) > 0).nonzero()[0] + 1
return np.median(ma[a]) if a.size else -db(fn(fo, qu))
# approximate the group delay bandwidth of a filter
def nodal_delay_bandwidth(qk, bw, fo, qu, steps=10000):
fn = fn_nodal_transmission(qk, bw, fo)
f = np.linspace(fo - 2 * bw, fo + 2 * bw, steps)
td = groupdelay(fn, f, qu)
a = np.diff(np.sign(np.diff(td))).nonzero()[0] + 1
f1 = f[a[0]]
f2 = f[a[-1]]
# from scipy.optimize import minimize
# res = minimize(lambda x: -groupdelay(fn, x, qu), f1, method='Nelder-Mead')
# f1 = res.x[0] if res.success else np.nan
# res = minimize(lambda x: -groupdelay(fn, x, qu), f2, method='Nelder-Mead')
# f2 = res.x[0] if res.success else np.nan
return f2 - f1
# approximate the 3db bandwidth of a filter
def nodal_bandwidth(qk, bw, fo, qu, cutoff=3.0103, steps=10000):
fn = fn_nodal_transmission(qk, bw, fo)
f = np.linspace(fo - 2 * bw, fo + 2 * bw, steps)
ma = db(fn(f, qu))
a = (np.diff(np.sign(np.diff(abs(np.max(ma) - ma - cutoff)))) > 0).nonzero()[0] + 1
f1 = f[a[0]]
f2 = f[a[-1]]
# from scipy.optimize import minimize
# res = minimize(lambda x: -db(fn(x, qu)), fo, method='Nelder-Mead')
# mamax = -res.fun if res.success else np.nan
# res = minimize(lambda x: abs(mamax - db(fn(x, qu)) - cutoff), f1, method='Nelder-Mead')
# f1 = res.x[0] if res.success else np.nan
# res = minimize(lambda x: abs(mamax - db(fn(x, qu)) - cutoff), f2, method='Nelder-Mead')
# f2 = res.x[0] if res.success else np.nan
return f2 - f1
#######################
# lossless groupdelay
#######################
# for a lossless bandpass filter, calculate Ness group delay values using g
def groupdelay_g(g, bw):
dw = 2 * np.pi * bw
td = [ 4 / dw *
sum(g[i%2+1:i:2]) * (g[0])**((-1)**i)
for i in range(2, len(g)) ]
return td
# for a lossless bandpass filter, calculate Ness group delay values using qk
def groupdelay_qk(qk, bw):
qk = np.array(qk)
QB = qk[0] / bw
KB = qk[1:-1] * bw
TD = np.zeros(len(qk)+1)
for i in range(2, len(TD)):
TD[i] = TD[i-2] + 2 / np.pi * (
QB * np.prod(KB[0:i-2:2]**2) /
np.prod(KB[1:i-2:2]**2))**((-1)**i)
return TD[2:]
#######################
# lossy groupdelay
#######################
# calculate the Ness S11 values at fo for a filter with a given QU
def groupdelay_maqu(g, bw, fo, qu):
w, wo, dw, wp = sy.symbols("w wo dw wp")
ma = []
for n in range(1, len(g)-1):
xin = lowpass_xin(g, wp, n)
WP = wo / dw * (w / wo - wo / w) - wo * sy.I / (qu * dw)
xin = xin.subs(wp, WP)
s11 = (xin * sy.I - g[0]) / (xin * sy.I + g[0])
s11 = s11.subs(wo, 2 * sy.pi * fo)
s11 = s11.subs(dw, 2 * sy.pi * bw)
fn = sy.lambdify(w, s11, 'numpy')
ma.append(abs(fn(2 * np.pi * fo)))
return np.array(ma)
# calculate the Ness group delays at fo for a filter with a given QU
def groupdelay_tdqu(g, bw, fo, qu):
w, wo, dw, wp = sy.symbols("w wo dw wp")
td = []
for n in range(1, len(g)-1):
xin = lowpass_xin(g, wp, n)
phi = -2 * sy.atan(xin / g[0])
WP = wo / dw * (w / wo - wo / w) - wo * sy.I / (qu * dw)
GD = -sy.diff(WP, w) * sy.simplify(sy.diff(phi, wp)).subs(wp, WP)
GD = GD.subs(w, wo)
GD = GD.subs(wo, 2 * sy.pi * fo)
GD = GD.subs(dw, 2 * sy.pi * bw)
td.append(float(GD.evalf()))
return np.array(td)
#######################
# reverse
#######################
# calculate QE and QU from the Ness group delay and return loss at QE
def qequ_groupdelay(fo, td1, ma1):
wo = 2 * np.pi * fo
qequ = (1 - abs(ma1)) / (1 + abs(ma1))
qe = wo * td1 / 4 * (1 - qequ**2)
qu = qe / qequ if qequ else np.inf
return qe, qu
# calculate QE, QU, and K12 from TD1, TD2, and the RL at QE
def k12_groupdelay(fo, td1, td2, ma1):
qe, qu = qequ_groupdelay(fo, td1, ma1)
if np.isinf(qu): qu = 1e99
wo = 2 * np.pi * fo
k12 = np.sqrt(
-1/qu**2 + 2/(qe*td2*wo) +
np.sqrt(-8*qe*td2*wo + 4*qu**2 + td2**2*wo**2)/
(qe*qu*td2*wo))
return k12
###
# for a given QE / QU find the reflection coefficient at QE
def reflection_qequ(qk, bw, fo, qu):
N = len(qk) - 1
QK = denormalize_qk(qk, bw, fo)
qe = QK[::N]
return (1 - qe / qu) / (1 + qe / qu)
# for a lossless bandpass filter, calculate qk from Ness group delay values at fo
def qk_groupdelayfo(td, fo):
wo = 2 * np.pi * fo
q = wo * td[0] / 4
td = np.concatenate((np.zeros(2), td))
k = 4 / wo / np.sqrt((td[2:-1] - td[:-3]) * (td[3:] - td[1:-2]))
qk = np.concatenate(([q], k, [q]))
return qk
#######################
# lowpass
#######################
# reactance of a low pass filter grounded at resonator n
def lowpass_xin(g, wp, n):
xin = 0
for i in reversed(range(1, n+1)):
G = wp * g[i]
if i % 2:
xin = 1 / (-G + 1 / xin) if xin else -1 / G
else:
xin += G
return xin
# impedance of a low pass filter grounded at resonator n
def lowpass_zin(g, wp, qu, n):
zin = 0
for i in reversed(range(1, n+1)):
G = wp * g[i] * sy.I
if i % 2:
zin = 1 / (G + 1 / zin) if zin else 1 / G
else:
zin += G + wp * g[i] / qu
return zin
# return function fn(f, qu) which calculates the Ness S11 values
# for lossy lowpass filters shorted at resonator n
def fn_lowpass_reflection(g, fo, n):
f, w, wo, wp, qu = sy.symbols("f w wo wp qu")
xin = lowpass_zin(g, wp, qu, n)
xin = xin.subs(wp, w / wo)
xin = xin.subs(wo, 2 * sy.pi * fo)
xin = xin.subs(w, 2 * sy.pi * f)
s11 = (xin - g[0]) / (xin + g[0])
return sy.lambdify([ f, qu ], s11, 'numpy')
def fn_lowpass_transmission(g, fo):
f, wp, qu = sy.symbols("f wp qu")
vin = 1
zin = g[0]
for i in range(1, len(g)-1):
G = wp * g[i] * sy.I
if i % 2:
a = 1 / G
vin = vin * a / (a + zin)
zin = 1 / (1 / a + 1 / zin)
else:
zin += G + wp * g[i] / qu
s21 = 2 * vin * g[-1] / (zin + g[-1])
s21 = s21.subs(wp, f / fo)
return sy.lambdify([f, qu], s21, 'numpy')
### approximations
def lowpass_groupdelay(g, fo, qu, steps=10000):
fp = []
td = []
for n in range(2, len(g)-2):
fn = fn_lowpass_reflection(g, fo, n)
f = np.linspace(0, 2 * fo, steps)
tdqu = groupdelay(fn, f, qu)
a = np.argmax(tdqu)
fmax = f[a]
peak = tdqu[a]
# from scipy.optimize import minimize
# res = minimize(lambda x: -groupdelay(fn, x, qu), fmax, method='Nelder-Mead')
# fmax = res.x[0] if res.success else np.nan
# peak = -res.fun if res.success else np.nan
fp.append(fmax)
td.append(peak)
return fp, td
def lowpass_bandwidth(g, fo, qu, steps=10000):
fn = fn_lowpass_transmission(g, fo)
f = np.linspace(0, 2 * fo, steps)
tdqu = groupdelay(fn, f, qu)
a = np.argmax(tdqu)
fmax = f[a]
peak = tdqu[a]
# from scipy.optimize import minimize
# res = minimize(lambda x: -groupdelay(fn, x, qu), fmax, method='Nelder-Mead')
# fmax = res.x[0] if res.success else np.nan
# peak = -res.fun if res.success else np.nan
return fmax, peak