Skip to content

Latest commit

 

History

History
39 lines (28 loc) · 1.71 KB

README.md

File metadata and controls

39 lines (28 loc) · 1.71 KB

Vit_Pretrain_Tools

PyTorch implementation tools for using vision transformer with Google pretrained model. (npz2pth)

Details

  • Transformer.py provides a generic pytorch implementation of Vision Transformer. And the basic module draws on SETR.

  • weights/npz2pth.py help us to convert the pre-trained model provided by Google in NPZ format into the applicable pth format.

Usage

  • Edit the config in Transformer.py to build the vit type you want. More detail setting

  • Edit the config in npz2pth.py. Note that we do not check the output categories number of the classification head. Download the suitable npz file according to your config from Vision Transformer. And this config dict has slight differences compared to config mentioned above.

python npz2pth.py --config=[$CONFIG_DICT] --npz_path=[$NPZ_FILE] --save_path=[$SAVE]
  • Initialize the parameter with the pretrained model. When key 'pretrained' is not setting in the cfg dict, function init_weight() will initialize network randomly.
S_16_224_config = {
        'depth': 12,
        'model_name': 'vit_S_16_224_image21K', # pth name
        'image_size':(512,512), # size of the images fed into network
        'heads': 6,
        'embed_dim': 384,
        'mlp_ratio': 4,
        'patch_size':16,
        'drop_rate': 0.1,
    }
cfg = S_16_224_config
cfg['pretrained'] = './weight/' # root path of pth file

model = build_vit_from_cfg(cfg)
model.init_weight()