-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
80 lines (68 loc) · 2.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import time
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer import Visualizer
import numpy as np
import os
import pickle
from collections import OrderedDict
import torchvision
import datetime
opt = TrainOptions().parse()
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
model = create_model(opt)
visualizer = Visualizer(opt)
info_dir = os.path.join(opt.checkpoints_dir, opt.name)
infoname = '%s.pkl' % (opt.which_epoch)
infoname = os.path.join(info_dir, infoname)
if opt.continue_train and os.path.exists(infoname):
print('Loaded epoch and total_steps')
file = open(infoname, 'rb')
info = pickle.load(file)
file.close()
epoch_count = info['epoch']
total_steps = info['total_steps']
else:
epoch_count = opt.epoch_count
total_steps = 0
print("Start epoch: ", epoch_count)
for steps in range(epoch_count - 1):
for scheduler in model.schedulers:
scheduler.step()
stat_errors = OrderedDict([('count', 0)])
# Count start time
prev_time = time.time()
total_epoch = opt.niter + opt.niter_decay + 1
for epoch in range(epoch_count, total_epoch):
epoch_start_time = time.time()
epoch_iter = 0
for i, data in enumerate(dataset):
iter_start_time = time.time()
iters_done = (epoch - 1) * (dataset_size / opt.batchSize) + i + 1
visualizer.reset()
total_steps += 1
epoch_iter += 1
model.set_input(data)
model.optimize_parameters()
if total_steps % opt.display_freq == 0:
visualizer.display_current_results(model.get_current_visuals(), epoch)
# Determine approximate time left
iters_left = (total_epoch - 1) * (dataset_size / opt.batchSize) - iters_done
time_left = datetime.timedelta(seconds=iters_left * (time.time() - prev_time))
prev_time = time.time()
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
visualizer.print_current_errors(epoch, epoch_iter, errors, time_left)
model.save('latest', epoch + 1, total_steps)
# save epoch model
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save(epoch, epoch + 1, total_steps)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()