-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatareader.py
432 lines (392 loc) · 16.4 KB
/
datareader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# title :datareader
# description :Script to extract and load the 4 datasets needed for our papers
# This script is extendable and can accommodate many more datasets
# author :Ronald Mutegeki
# date :20210203
# version :1.0
# usage :Either execute the file with "dataset_name" and "dataset_path" specified or call it in utils.py.
# notes :Uses already downloaded datasets to prepare them for our models
import csv
import glob
import sys
import h5py
import numpy as np
import pandas as pd
import simplejson as json
# Structure followed in this file is based on : https://github.com/nhammerla/deepHAR/tree/master/data
class DataReader:
def __init__(self, dataset, datapath, _type='original'):
if dataset == 'daphnet':
self.data, self.idToLabel = self._read_daphnet(datapath.rstrip("/"))
self.save_data(dataset, datapath.rstrip("/") + "/")
elif dataset == 'opportunity':
self.data, self.idToLabel = self._read_opportunity(datapath.rstrip("/"))
self.save_data(dataset, datapath.rstrip("/") + "/")
elif dataset == 'pamap2':
self.data, self.idToLabel = self._read_pamap2(datapath.rstrip("/"))
self.save_data(dataset, datapath.rstrip("/") + "/")
elif dataset == 'ucihar':
self.data, self.idToLabel = self._read_ucihar(datapath.rstrip("/"))
self.save_data(dataset, datapath.rstrip("/") + "/")
elif dataset == 'ispl':
self.data, self.idToLabel = self._read_ispl(datapath.rstrip("/"))
self.save_data(dataset, datapath.rstrip("/") + "/")
else:
print('Dataset is not yet supported!')
sys.exit(0)
def save_data(self, dataset, path=""):
f = h5py.File(f'{path}{dataset}.h5', mode='w')
for key in self.data:
f.create_group(key)
for field in self.data[key]:
f[key].create_dataset(field, data=self.data[key][field])
f.close()
with open(f'{path}{dataset}.h5.classes.json', 'w') as f:
f.write(json.dumps(self.idToLabel))
print('Done.')
@property
def train(self):
return self.data['train']
@property
def validation(self):
return self.data['validation']
@property
def test(self):
return self.data['test']
def _read_pamap2(self, datapath):
files = {
'train': [
'subject101.dat', 'subject102.dat', 'subject103.dat', 'subject104.dat',
'subject107.dat', 'subject108.dat', 'subject109.dat'
],
'validation': [
'subject105.dat'
],
'test': [
'subject106.dat'
]
}
label_map = [
# (0, 'other'),
(1, 'lying'),
(2, 'sitting'),
(3, 'standing'),
(4, 'walking'),
(5, 'running'),
(6, 'cycling'),
(7, 'nordic walking'),
# (9, 'watching TV'),
# (10, 'computer work'),
# (11, 'car driving'),
(12, 'ascending stairs'),
(13, 'descending stairs'),
(16, 'vacuum cleaning'),
(17, 'ironing'),
# (18, 'folding laundry'),
# (19, 'house cleaning'),
# (20, 'playing soccer'),
# (24, 'rope jumping')
]
labelToId = {str(x[0]): i for i, x in enumerate(label_map)}
idToLabel = [x[1] for x in label_map]
# remove the columns we don't need (Heart rate, temperature, orientation...)
cols = [
1, # Label
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, # IMU Hand
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, # IMU Chest
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 # IMU ankle
]
data = {dataset: self._read_pamap2_files(datapath, files[dataset], cols, labelToId)
for dataset in ('train', 'validation', 'test')}
return data, idToLabel
def _read_pamap2_files(self, datapath, filelist, cols, labelToId):
data = []
labels = []
for i, filename in enumerate(filelist):
print('Reading file %d of %d' % (i + 1, len(filelist)))
with open(f'{datapath.rstrip("/")}/Protocol/{filename}', 'r') as f:
reader = csv.reader(f, delimiter=' ')
for line in reader:
elem = []
# not including the activities with few labeled data and "other"
if line[1] == "0" or line[1] == "9" or line[1] == "10" or line[1] == "11" or line[1] == "18" \
or line[1] == "19" or line[1] == "20" or line[1] == "24":
continue
for ind in cols:
elem.append(line[ind])
if sum([x == 'NaN' for x in elem]) == 0:
data.append([float(x) for x in elem[1:]])
labels.append(labelToId[elem[0]])
return {'inputs': np.asarray(data), 'targets': np.asarray(labels, dtype=int)}
def _read_daphnet(self, datapath):
files = {
'train': [
'S01R01.txt', 'S01R02.txt',
'S03R01.txt', 'S03R02.txt',
'S06R01.txt', 'S06R02.txt',
'S07R01.txt', 'S07R02.txt',
'S08R01.txt', 'S09R01.txt', 'S10R01.txt'
],
'validation': [
'S02R02.txt', 'S03R03.txt', 'S05R01.txt'
],
'test': [
'S02R01.txt', 'S04R01.txt', 'S05R02.txt'
]
}
label_map = [
# (0, 'Other')
(1, 'No freeze'),
(2, 'Freeze')
]
labelToId = {str(x[0]): i for i, x in enumerate(label_map)}
idToLabel = [x[1] for x in label_map]
cols = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
data = {dataset: self._read_daph_files(datapath, files[dataset], cols, labelToId)
for dataset in ('train', 'validation', 'test')}
return data, idToLabel
def _read_daph_files(self, datapath, filelist, cols, labelToId):
data = []
labels = []
for i, filename in enumerate(filelist):
print('Reading file %d of %d' % (i + 1, len(filelist)))
with open(f'{datapath.rstrip("/")}/dataset/%s' % filename, 'r') as f:
reader = csv.reader(f, delimiter=' ')
for line in reader:
elem = []
# not including the non related activity
if line[10] == "0":
continue
for ind in cols:
if ind == 10:
if line[ind] == "0":
continue
elem.append(line[ind])
if sum([x == 'NaN' for x in elem]) == 0:
data.append([float(x) / 1000 for x in elem[:-1]])
labels.append(labelToId[elem[-1]])
return {'inputs': np.asarray(data), 'targets': np.asarray(labels, dtype=int)}
def _read_opportunity(self, datapath):
files = {
'train': [
'S1-ADL2.dat', 'S1-ADL3.dat', 'S1-ADL4.dat', 'S1-ADL5.dat', 'S1-Drill.dat',
'S2-ADL1.dat', 'S2-ADL3.dat', 'S2-ADL4.dat', 'S2-ADL5.dat',
'S3-ADL2.dat', 'S3-ADL4.dat', 'S3-ADL5.dat',
'S4-ADL1.dat', 'S4-ADL2.dat', 'S4-ADL3.dat', 'S4-Drill.dat'
],
'validation': [
'S1-ADL1.dat',
'S3-ADL3.dat', 'S3-Drill.dat',
'S4-ADL4.dat',
],
'test': [
'S2-ADL2.dat', 'S2-Drill.dat',
'S3-ADL1.dat',
'S4-ADL5.dat',
]
}
# names are from label_legend.txt of Opportunity dataset
# except 0-ie Other, which is an additional label
label_map = [
# (0, 'Other'),
(406516, 'Open Door 1'),
(406517, 'Open Door 2'),
(404516, 'Close Door 1'),
(404517, 'Close Door 2'),
(406520, 'Open Fridge'),
(404520, 'Close Fridge'),
(406505, 'Open Dishwasher'),
(404505, 'Close Dishwasher'),
(406519, 'Open Drawer 1'),
(404519, 'Close Drawer 1'),
(406511, 'Open Drawer 2'),
(404511, 'Close Drawer 2'),
(406508, 'Open Drawer 3'),
(404508, 'Close Drawer 3'),
(408512, 'Clean Table'),
(407521, 'Drink from Cup'),
(405506, 'Toggle Switch')
]
labelToId = {str(x[0]): i for i, x in enumerate(label_map)}
idToLabel = [x[1] for x in label_map]
cols = [
38, 39,
40, 41, 42, 43, 44, 45, 46,
51, 52, 53, 54, 55, 56, 57, 58, 59,
64, 65, 66, 67, 68, 69,
70, 71, 72, 77, 78, 79,
80, 81, 82, 83, 84, 85,
90, 91, 92, 93, 94, 95, 96, 97, 98,
103, 104, 105, 106, 107, 108, 109,
110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
130, 131, 132, 133, 134,
250]
cols = [x - 1 for x in cols] # labels for 17 activities (excluding other)
data = {dataset: self._read_opportunity_files(datapath, files[dataset], cols, labelToId)
for dataset in ('train', 'validation', 'test')}
return data, idToLabel
# this is from https://github.com/nhammerla/deepHAR/tree/master/data and it is an opportunity Challenge reader.
# It is a python translation for the official one provided by the dataset publishers in Matlab.
def _read_opportunity_files(self, datapath, filelist, cols, labelToId):
data = []
labels = []
for i, filename in enumerate(filelist):
print('Reading file %d of %d' % (i + 1, len(filelist)))
with open(f'{datapath.rstrip("/")}/dataset/{filename}', 'r') as f:
reader = csv.reader(f, delimiter=' ')
for line in reader:
elem = []
# not including the transient activity
if line[-1] == "0":
continue
for ind in cols:
elem.append(line[ind])
if sum([x == 'NaN' for x in elem]) == 0:
data.append([float(x) / 1000 for x in elem[:-1]])
labels.append(labelToId[elem[-1]])
return {'inputs': np.asarray(data), 'targets': np.asarray(labels, dtype=int)}
# This data is already windowed and segmented
def _read_ucihar(self, datapath):
signals = [
"body_acc_x",
"body_acc_y",
"body_acc_z",
"body_gyro_x",
"body_gyro_y",
"body_gyro_z",
"total_acc_x",
"total_acc_y",
"total_acc_z",
]
label_map = [
(1, 'Walking'),
(2, 'Walking_Upstairs'),
(3, 'Walking_Downstairs'),
(4, 'Sitting'),
(5, 'Standing'),
(6, 'Laying')
]
subjects = {
# Original train set = 70% of all subjects
'train': [
1, 3, 5, 6, 7, 8, 11, 14, 15, 16, 17,
19, 21, 22, 23, 25, 26, 27, 28, 29, 30
],
# 1/3 of test set = 10% of all subjects
'validation': [
4, 12, 20
],
# 2/3 of original test set = 20% of all subjects
'test': [
2, 9, 10, 13, 18, 24
]
}
# labelToId = {str(x[0]): i for i, x in enumerate(label_map)}
idToLabel = [x[1] for x in label_map]
print('Loading train')
x_train = self._load_signals(datapath, 'train', signals)
y_train = self._load_labels(f'{datapath}/train/y_train.txt')
print('Loading test')
x_test = self._load_signals(datapath, 'test', signals)
y_test = self._load_labels(f'{datapath}/test/y_test.txt')
print("Loading subjects")
# Pandas dataframes
subjects_train = self._load_subjects(f'{datapath}/train/subject_train.txt')
subjects_test = self._load_subjects(f'{datapath}/test/subject_test.txt')
_data = np.concatenate((x_train, x_test), 0)
_labels = np.concatenate((y_train, y_test), 0)
_subjects = np.concatenate((subjects_train, subjects_test), 0)
print("Data: ", _data.shape, "Targets: ", _labels.shape, "Subjects: ", _subjects.shape)
data = {dataset: self.split_uci_data(subjects[dataset], _data, _labels, _subjects)
for dataset in ('train', 'validation', 'test')}
return data, idToLabel
def split_uci_data(self, subjectlist, _data, _labels, _subjects):
data = []
labels = []
for i, subject_id in enumerate(subjectlist):
print(f'Adding Subject {i + 1} -> {subject_id} of {len(subjectlist)} subjects')
for j, subject in enumerate(_subjects):
if subject == subject_id:
data.append(_data[j])
labels.append(_labels[j])
return {'inputs': np.asarray(data), 'targets': np.asarray(labels, dtype=int)}
def _load_signals(self, datapath, subset, signals):
signals_data = []
for signal in signals:
filename = f'{datapath}/{subset}/Inertial Signals/{signal}_{subset}.txt'
signals_data.append(
pd.read_csv(filename, delim_whitespace=True, header=None).values
)
# Resultant shape is (7352 train/2947 test samples, 128 timesteps, 9 signals)
return np.transpose(signals_data, (1, 2, 0))
def _load_labels(self, label_path, delimiter=","):
with open(label_path, 'rb') as file:
y_ = np.loadtxt(label_path, delimiter=delimiter)
return y_
def _load_subjects(self, subject_path, delimiter=","):
return np.loadtxt(subject_path, delimiter=delimiter)
def _read_ispl(self, datapath):
# create the iSPL dataset from raw data in the dataset folder
datafiles = glob.glob(f"{datapath}/raw/*sensor*.txt")
files = {
'train': [
datafiles[0],
datafiles[1],
datafiles[2]
],
'validation': [
datafiles[3],
datafiles[4]
],
'test': [
datafiles[5]
]
}
label_map = [
# (0, 'Idle'),
(1, 'Walking'),
(2, 'Standing'),
(3, 'Sitting'),
# (4, 'Running')
]
labelToId = {str(x[0]): i for i, x in enumerate(label_map)}
idToLabel = [x[1] for x in label_map]
cols = [
4, 5, 6, # Acc x,y,z
7, 8, 9, # Gyr x,y,z
# 10, 11, 12, # Mag x,y,z
13, 14, 15, # lacc x,y,z
# 16 # Barometer
0 # ActivityID
]
data = {dataset: self._read_ispl_files(datapath, files[dataset], cols, labelToId)
for dataset in ('train', 'validation', 'test')}
return data, idToLabel
def _read_ispl_files(self, datapath, filelist, cols, labelToId):
data = []
labels = []
for i, filename in enumerate(filelist):
print('Reading file %d of %d' % (i + 1, len(filelist)))
with open(f'{filename}', 'r') as f:
reader = csv.reader(f, delimiter=',')
for line in reader:
elem = []
# not including the transient activity
if line[0] == "0":
continue
for ind in cols:
elem.append(line[ind])
if sum([x == 'NaN' for x in elem]) == 0:
data.append([float(x) / 1000 for x in elem[:-1]])
labels.append(labelToId[elem[-1]])
return {'inputs': np.asarray(data), 'targets': np.asarray(labels, dtype=int)}
if __name__ == "__main__":
if len(sys.argv) > 1:
_dataset = sys.argv[1]
_datapath = sys.argv[2]
else:
_dataset = input('Enter Dataset name e.g. opportunity, daphnet, ucihar, pamap2:')
_datapath = input('Enter Dataset root folder: ')
print(f'Reading {_dataset} from {_datapath}')
dr = DataReader(_dataset, _datapath)