-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
133 lines (102 loc) · 4.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import llm
import anymodal
import torch
import vision
from torch.utils.data import DataLoader
import schedulefree
import numpy as np
from tqdm import tqdm
import os
import matplotlib.pyplot as plt
from torch.amp import GradScaler
# Load language model and tokenizer
llm_tokenizer, llm_model = llm.get_llm(
"meta-llama/Llama-3.2-1B",
access_token='GET_YOUR_OWN_TOKEN_FROM_HUGGINGFACE'
)
llm_hidden_size = llm.get_hidden_size(llm_tokenizer, llm_model)
# Dataset configuration
dataset_name = "AnyModal/flickr30k"
# Load vision model components
image_processor, vision_model, vision_hidden_size = vision.get_image_encoder('google/vit-base-patch16-224', use_peft=False)
train_dataset = vision.ImageDataset(dataset_name, image_processor, split = 'train')
val_dataset = vision.ImageDataset(dataset_name, image_processor, split = 'validation')
train_size = len(train_dataset)
val_size = len(val_dataset)
# DataLoader configuration
batch_size = 6
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# train_loader = DataLoader(torch.utils.data.Subset(train_dataset, range(train_size//5)), batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
# val_loader = DataLoader(torch.utils.data.Subset(val_dataset, range(val_size//5)), batch_size=batch_size, shuffle=True)
train_size = len(train_loader)
val_size = len(val_loader)
print(f"Train size: {train_size}, Validation size: {val_size}")
# Initialize vision tokenizer and encoder
vision_encoder = vision.VisionEncoder(vision_model)
vision_tokenizer = vision.Projector(vision_hidden_size, llm_hidden_size, num_hidden=1)
# Initialize MultiModalModel
multimodal_model = anymodal.MultiModalModel(
input_processor=None,
input_encoder=vision_encoder,
input_tokenizer=vision_tokenizer,
language_tokenizer=llm_tokenizer,
language_model=llm_model,
lm_peft = llm.add_peft,
prompt_text="The description of the given image is: ")
# multimodal_model.language_model = llm.add_peft(multimodal_model.language_model)
# Training configuration
num_epochs = 3
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
multimodal_model = multimodal_model.to(device)
multimodal_model.train()
# Optimizer
optimizer = schedulefree.AdamWScheduleFree(multimodal_model.parameters(), lr=3e-4)
optimizer.train()
scaler = GradScaler()
os.makedirs("image_captioning_model", exist_ok=True)
# Training loop
for epoch in range(num_epochs):
training_losses = []
for batch_idx, batch in tqdm(enumerate(train_loader), desc=f"Epoch {epoch+1} Training", leave=False):
optimizer.zero_grad()
with torch.autocast(device_type='cuda', dtype=torch.float16):
logits, loss = multimodal_model(batch)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
training_losses.append(loss.item())
avg_train_loss = sum(training_losses) / len(training_losses)
print(f"Epoch {epoch+1} Training Loss: {avg_train_loss:.4f}")
# Validation
multimodal_model.eval()
validation_losses = []
with torch.no_grad():
for batch_idx, batch in tqdm(enumerate(val_loader), desc=f"Epoch {epoch+1} Validation", leave=False):
logits, loss = multimodal_model(batch)
validation_losses.append(loss.item())
avg_val_loss = sum(validation_losses) / len(validation_losses)
print(f"Epoch {epoch+1} Validation Loss: {avg_val_loss:.4f}")
# Decode a random validation sample
for _ in range(5):
sample_idx = np.random.randint(len(val_dataset))
sample = val_dataset[sample_idx]
print("Actual Text: ", sample['text'])
print("Generated Text: ", multimodal_model.generate(sample['input'], max_new_tokens=120))
multimodal_model.train()
# Save the model
multimodal_model._save_model("image_captioning_model")
multimodal_model.eval()
for _ in range(5):
sample_idx = np.random.randint(len(val_dataset))
sample = val_dataset[sample_idx]
# save the image with the caption and the generated caption
image = sample['image']
caption = sample['text']
generated_caption = multimodal_model.generate(sample['input'], max_new_tokens=120)
plt.imshow(image)
plt.axis('off')
plt.savefig(f"image_{sample_idx}.png")
with open(f"image_{sample_idx}_caption.txt", "w") as f:
f.write(f"Actual Caption: {caption}\n")
f.write(f"Generated Caption: {generated_caption}\n")