forked from moeni27/LyriFont
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLyriFont.py
712 lines (618 loc) · 22 KB
/
LyriFont.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
'''
LyriFont is an interactive tool that transforms song lyrics into genre-specific text, offering users a multi-sensory, 360° experience.
This python script is devoted to retrieve the lyrics of the selected song and to predict the genre and the associated font by pre-trained NN models.
Moreover, it generates images taking advantage of Stable Diffusion starting from the key words of the current lyrics.
Usage : This script works in couple with LyriFont.pde processing file. LyriFont.py needs to be ran first, LyriFont.pre after.
Be sure that this script is correctly listening on the localhost server and waiting for osc messages before running the processing project.
'''
# Import Libraries
from sklearn.feature_extraction.text import TfidfVectorizer
import argparse
import syncedlyrics
import os
import pandas as pd
import spotipy
from spotipy.oauth2 import SpotifyClientCredentials
from pythonosc import udp_client
from pythonosc import osc_server
from pythonosc import dispatcher
import sys
from objsize import get_deep_size
import config
import spacy
import math
from PIL import Image
from datetime import datetime
import requests
import io
import random
import librosa
import tensorflow as tf
import numpy as np
import config
import Levenshtein
from translate import Translator
from langdetect import detect
from unidecode import unidecode
import codecs
def strict_handler(exception):
return u"", exception.end
codecs.register_error("strict", strict_handler)
# Save Current Path
currentpath = sys.path[0]
# Genre Labels
labels = ["Pop","Rock","Metal","Hiphop","Reggae","Blues","Classical","Jazz","Disco","Country"]
# File path for excel with all fonts
excel_path = os.path.join(currentpath, "GenreFontDataset.xlsx") #os.path.join(currentpath, "ML_Spreadsheet.xlsx")
# Create a folder for Images
folder_path = os.path.join(currentpath, "LyriFont/Images")
if not os.path.exists(folder_path):
os.makedirs(folder_path)
# Read Fonts Excel file
df = pd.read_excel(excel_path, index_col=None, header=None)
# Server Client
client = udp_client.SimpleUDPClient("127.0.0.1", 1234)
unicodeerr = False
# Retrieves from the multiples genres proposed by Spotify the first that matches with the ones we used as labels for the models
def find_first_common_genre(genres, labels):
labels_set = set(labels)
for genre in genres:
if genre.capitalize() in labels_set:
return genre
closest_distance = float('inf')
# If no perfect match found, try closest
for genre in genres:
for label in labels_set:
# Calculate the Levenshtein distance
distance = Levenshtein.distance(label, genre)
if distance < closest_distance:
closest_distance = distance
closest_match = genre
closest_label = label
if closest_distance<5:
return closest_label
else:
return None
# max OSC size for Processing is 2048 bytes, function accordingly limits the size of the message
# chunk by performing a slicing if necessary
def checkSize(array, default):
if (get_deep_size(array)>2048):
k = 1
while (get_deep_size(array[0:k])<2048):
k += 1
return k
else: return default
def find_closest_filename(target, folder_path):
# List all files in the directory
files = os.listdir(folder_path)
global unicodeerr
if not files:
return None, None # Return None if the folder is empty
closest_file = None
closest_distance = float('inf')
for file in files:
# Calculate the Levenshtein distance
distance = Levenshtein.distance(target, file)
if distance < closest_distance:
closest_distance = distance
closest_file = file
closest_file = os.path.join(os.path.join(currentpath,"Songs"),closest_file)
if closest_distance>0:
unicodeerr = True
else:
unicodeerr = False
return closest_file, closest_distance
# Preprocess audio before prediction. MFCCs are retrieved.
def preprocess_song(file_path,num_mfcc=40, n_fft=2048, hop_length=512, num_segment=10,offset=0,duration=30,param=False):
sample_rate = 22050
samples_per_segment = int(sample_rate*30/num_segment)
file_path, distance = find_closest_filename(file_path.split('\\')[-1], os.path.join(currentpath,"Songs"))
try:
if(param):
y, sr = librosa.load(file_path, sr = sample_rate,offset=offset,duration=duration)
else:
y, sr = librosa.load(file_path, sr = sample_rate)
except:
return None
for n in range(num_segment):
mfcc = librosa.feature.mfcc(y = y[samples_per_segment*n: samples_per_segment*(n+1)],
sr = sample_rate, n_mfcc = num_mfcc, n_fft = n_fft,
hop_length = hop_length)
mfcc = mfcc.T
if len(mfcc) == math.ceil(samples_per_segment / hop_length):
return mfcc.tolist();
return None
# Gets association genre-number of the model
def genreConversionGZTAN(genreNumber):
genre = ""
match genreNumber:
case 1:
genre = "Pop"
case 2:
genre = "Rock"
case 3:
genre = "Metal"
case 4:
genre = "Hiphop"
case 5:
genre = "Reggae"
case 6:
genre = "Blues"
case 7:
genre = "Classical"
case 8:
genre = "Jazz"
case 9:
genre = "Disco"
case 10:
genre = "Country"
print("The genre of the song is : " + genre)
return genre
# Get association font-number of the model for each genre
# FONTS SHOULD BE CHANGED
def fontConversionRock(fontNumber):
font = ""
match fontNumber:
case 0:
font = "ChrustyRock-ORLA.ttf"
case 1:
font = "GraniteRockSt-lGae.ttf"
case 2:
font = "MonsterRock-rPM7.ttf"
case 3:
font = "RockElegance-AyXM.ttf"
case 4:
font = "RockIt-yjYm.ttf"
case 5:
font = "RockPlaza-517M8.ttf"
case 6:
font = "RockRadio-Wy4Vz.ttf"
case 7:
font = "RockSlayers-BW6Lw.ttf"
case 8:
font = "RockSteady-Wyy7A.ttf"
case 9:
font = "WillRockYou-ZVgyK.ttf"
print("The font selected is: " + font)
return font
def fontConversionCountry(fontNumber):
font = ""
match fontNumber:
case 0:
font = "BroncoPersonalUse.ttf"
case 1:
font = "Carnevalee Freakshow.ttf"
case 2:
font = "Cowboy Movie.ttf"
case 3:
font = "Edmunds.ttf"
case 4:
font = "FontanioBlack.ttf"
case 5:
font = "IFC INSANE RODEO.ttf"
case 6:
font = "NORTHWEST-B-DEMO.ttf"
case 7:
font = "RioGrande.ttf"
case 8:
font = "SHADSER.TTF"
case 9:
font = "WEST____.TTF"
print("The font selected is: " + font)
return font
def fontConversionHiphop(fontNumber):
font = ""
match fontNumber:
case 0:
font = "08Underground-grB6.ttf"
case 1:
font = "AttackGraffiti-3zRBM.ttf"
case 2:
font = "BombDaGone-VG0RB.ttf"
case 3:
font = "Chronic-1GnwL.ttf"
case 4:
font = "DonGraffiti-wrYx.ttf"
case 5:
font = "DowntownStreet-0WY0R.ttf"
case 6:
font = "GraffitiHipsterDemoVersionRegular-ZVBxJ.ttf"
case 7:
font = "SlimWandalsAltPersonalUse-AL9vM.ttf"
case 8:
font = "UrbanFest-YzrJO.ttf"
case 9:
font = "ZlatoustChaos-p7jZy.ttf"
print("The font selected is: " + font)
return font
def fontConversionBlues(fontNumber):
font = ""
match fontNumber:
case 0:
font = "ColderWeatherRegular-L33vG.ttf"
case 1:
font = "FieldsOfCathayRegular-Z9B3.ttf"
case 2:
font = "FortDeath-3ne6.ttf"
case 3:
font = "HellsRiderDecay-KRxZ.ttf"
case 4:
font = "RoadShot-d9D9V.ttf"
case 5:
font = "RoadShot-qZYDl.ttf"
case 6:
font = "RumbleweedspurRegular-VwLy.ttf"
case 7:
font = "TheCheelaved-owOvo.ttf"
case 8:
font = "UnchainedRoughPersonalUseRegular-WyjAz.ttf"
case 9:
font = "ZinfandelSpurRegular-qJr0.ttf"
print("The font selected is: " + font)
return font
def fontConversionPop(fontNumber):
font = ""
match fontNumber:
case 0:
font = "AtamaG-6YeeY.ttf"
case 1:
font = "BoldskyRegular-Rp6G3.ttf"
case 2:
font = "BritishPopMusic-levV.ttf"
case 3:
font = "BubbleHead-6Y1jq.ttf"
case 4:
font = "Hurtz-OVLme.ttf"
case 5:
font = "LunarPopDemoRegular-qZVZ6.ttf"
case 6:
font = "MicroPop-DO10d.ttf"
case 7:
font = "RoundPop-owwjd.ttf"
case 8:
font = "TigerChest-yw6Le.ttf"
case 9:
font = "UnicornPop-Z0qq.ttf"
print("The font selected is: " + font)
return font
def fontConversionJazz(fontNumber):
font = ""
match fontNumber:
case 0:
font = "BeautySwingPersonalUse-DOEaD.ttf"
case 1:
font = "jazztext.ttf"
case 2:
font = "MEllington.ttf"
case 3:
font = "OPTINovelGothic-XBoldAgen.ttf"
case 4:
font = "GloriousChristmas-BLWWB.ttf"
case 5:
font = "ArianaVioleta-dz2K.ttf"
case 6:
font = "BelieveIt-DvLE.ttf"
case 7:
font = "MorganChalk-L3aJy.ttf"
case 8:
font = "BeckyTahlia-MP6r.ttf"
case 9:
font = "Mighty-X34Z2.ttf"
print("The font selected is: " + font)
return font
def fontConversionMetal(fontNumber):
font = ""
match fontNumber:
case 0:
font = "BogartsMetal-MVBEe.ttf"
case 1:
font = "CrushMetal-8MP7A.ttf"
case 2:
font = "DeadeldermetalRegular-1Gx3v.ttf"
case 3:
font = "Distem-VG2nx.ttf"
case 4:
font = "MetalArhythmeticRegular-1pnL.ttf"
case 5:
font = "MetalManiaItalic-X36rP.ttf"
case 6:
font = "MetalThornRegular-0W43G.ttf"
case 7:
font = "MetalVengeanceItalic-owAdd.ttf"
case 8:
font = "MetrimLetterRegular-vmW6M.ttf"
case 9:
font = "TheOvercook-vmjYM.ttf"
print("The font selected is: " + font)
return font
def fontConversionReggae(fontNumber):
font = ""
match fontNumber:
case 0:
font = "AguaDejamaicaItalic-55Yv.ttf"
case 1:
font = "MarleyRegular-zM1a.ttf"
case 2:
font = "MarleyFontDemoDemo-eZDVO.ttf"
case 3:
font = "ReggaeOne-Regular.ttf"
case 4:
font = "SpidroMarleyFreeVersionRegular-rgKRB.ttf"
case 5:
font = "TunUpDeTing-jBxy.ttf"
case 6:
font = "LoveDays-2v7Oe.ttf"
case 7:
font = "ShortBaby-Mg2w.ttf"
case 8:
font = "fast99.ttf"
case 9:
font = "zawijasy.ttf"
print("The font selected is: " + font)
return font
def fontConversionClassical(fontNumber):
font = ""
match fontNumber:
case 0:
font = "AutumnFlowers-9YVZK.ttf"
case 1:
font = "BabySela-vmxz4.ttf"
case 2:
font = "ClassicSignatureDemo-axdDE.ttf"
case 3:
font = "Classical-4pq9.ttf"
case 4:
font = "ElegantDemo-OVJX6.ttf"
case 5:
font = "ElegantStylish-JR3xj.ttf"
case 6:
font = "Faldith-qZM95.ttf"
case 7:
font = "FathirScriptPersonalUseOnly-MV2rJ.ttf"
case 8:
font = "HarmonyStrikinglyRegular-d978X.ttf"
case 9:
font = "RusillaSerif-2OZpl.ttf"
print("The font selected is: " + font)
return font
def fontConversionDisco(fontNumber):
font = ""
match fontNumber:
case 0:
font = "70SdiscopersonaluseBold-w14z2.ttf"
case 1:
font = "DiscoDeck-a4wa.ttf"
case 2:
font = "DiscoDuck3DItalic-al1m.ttf"
case 3:
font = "DiscoEverydayValueRegular-zMGG.ttf"
case 4:
font = "Disco-4BGl.ttf"
case 5:
font = "DiscoInferno-drME.ttf"
case 6:
font = "Gelam-lKo5.ttf"
case 7:
font = "MoogieDisco-2OwAX.ttf"
case 8:
font = "Sugar-lxD5.ttf"
case 9:
font = "TokyoHoneyChan-dLR.ttf"
print("The font selected is: " + font)
return font
# Retrieves the genre of the selected artist through Spotipy
def getSpotifyFont(artist):
client_credentials_manager = SpotifyClientCredentials(client_id=config.client_id, client_secret=config.client_secret)
sp = spotipy.Spotify(client_credentials_manager=client_credentials_manager) #spotify object to access API
name = artist
result = sp.search(name)
track = result['tracks']['items'][0]
artist = sp.artist(track["artists"][0]["external_urls"]["spotify"])
common_genre = find_first_common_genre(artist["genres"], labels)
return(common_genre)
# Generate image from text through Stable Diffusion
def text2image(prompt: str, fnameimage):
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
headers = {"Authorization": f"Bearer {config.api_key}"}
payload = {"inputs": prompt}
try:
response = requests.post(API_URL, headers=headers, json=payload)
response.raise_for_status() # Ensure the request was successful
if 'image' not in response.headers.get('Content-Type', ''):
print("Response content is not an image.")
print("Response content:", response.content)
return None
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
timestamps = datetime.now().strftime("%Y%m%d%H%M%S")
name = fnameimage + "_" + timestamps
filename = f"{name}.jpg"
filepath = os.path.join(folder_path, filename)
image.save(filepath)
return filename
# Returns default images if Hugging Face is unavailable
except requests.exceptions.RequestException as e:
print(f"HTTP request failed: {e}")
for x in range(4):
with open(os.path.join(currentpath, f"LyriFont/Default_Images/default_{x+1}.jpg"), 'rb') as f:
image_bytes = f.read()
image = Image.open(io.BytesIO(image_bytes))
filename = f"default_{x+1}.jpg"
filepath = os.path.join(folder_path, filename)
image.save(filepath)
return None
except PIL.UnidentifiedImageError:
print("Cannot identify image file from the response.")
return None
except Exception as e:
print(f"An unexpected error occurred: {e}")
# Return default image if an error occurs
return None
# Extract keywords from text and translate them in english in order to generate images
def translate_to_english(keyword, source_lang):
translator = Translator(to_lang="en", from_lang=source_lang)
translated = translator.translate(keyword)
return translated
def extract_keywords_tfidf(text):
if len(text) > 10:
max_keywords = 5
else:
max_keywords = 1
# Detect the language of the input text
source_lang = detect(text)
# Translate the input text to English
translated_text = translate_to_english(text[:500], source_lang)
# Process the translated text
nlp = spacy.load("en_core_web_sm")
doc = nlp(translated_text)
# Extract nouns from the processed text (use set for no duplicates)
nouns = set([token.text for token in doc if token.pos_ == "NOUN"])
# Return the keywords
keywords = list(nouns)[:max_keywords]
if len(text) == 0:
keywords = ['music', 'violin', 'music sheet', 'melody', 'clarinet']
return keywords
# It retrieves the lyrics, predicts genre and font, and sends everything back to the processing file
def loadLyrics(unused_addr, args):
# Get artist and song names
fname = os.path.basename(args)
artistname = fname.split(" - ")[0]
songname = os.path.splitext("".join(fname.split(" - ")[1:]))[0]
# Build song path
song_path = os.path.join(currentpath, os.path.join("Songs", fname))
# Load pre-trained model for genre recognition
# Song is splitted in n_of_chunks chunks, for each one is predicted the genre and the final output is obtained by averaging all outpust
model = tf.keras.models.load_model(os.path.join(currentpath, "model.keras"))
n_of_chunks = 5
predictions = np.zeros((1, 11))
for x in range(0,n_of_chunks):
offset = 30*(x+1)
duration = 30
# Prepare input song data
x_test_1 = preprocess_song(song_path,offset=offset,duration=duration,param=True)
if(x_test_1 == None):
x_test_1 = preprocess_song(song_path,param=False)
if(x_test_1 == None):
n_of_chunks = x
break
x_test_1 = np.array(x_test_1)
x_test_1 = x_test_1.reshape(1,130,40)
# Predict song genre
y_pred = model.predict(x_test_1)
predictions = predictions + y_pred
print("Chunk " + str(x+1))
pred = np.argmax(y_pred, axis=1)
genreConversionGZTAN(pred)
print("Value : " + str(y_pred[0,pred]))
if unicodeerr:
file_path, distance = find_closest_filename(fname.split('\\')[-1], os.path.join(currentpath,"Songs"))
artistname = file_path.split('\\')[-1].split(' - ')[0]
songname = os.path.splitext("".join(file_path.split(" - ")[1:]))[0]
# Overall Prediction
predictions = predictions/n_of_chunks
print("Final prediction!")
final_pred = np.argmax(predictions, axis=1)
genre = genreConversionGZTAN(final_pred)
value = predictions[0,final_pred]
print("Value : " + str(value))
# Get genre from prediction
# If prediction is lower than 0.85 we opt to retrieve the genre from Spotify
spot_genre = None
if (value < 0.85):
spot_genre = getSpotifyFont(artistname)
if spot_genre != None:
spot_genre = spot_genre.capitalize()
print("Search genre by Spotify")
if spot_genre:
print(f"There is a common genre: {spot_genre}")
genre = spot_genre
else:
print("No spotify common genres found.")
print(genre)
# Send genre to processing file
client.send_message("/genre", labels.index(genre))
# Load genre-subFont model
fontPath = os.path.join(currentpath, "Trained models")
modelFont = tf.keras.models.load_model(os.path.join(fontPath, genre + ".keras"))
# Preprocess input data
x_test = preprocess_song(song_path, param=False)
x_test = np.array(x_test)
x_test = x_test.reshape(1, 130, 40)
# Do font prediction
y_pred = model.predict(x_test)
pred = np.argmax(y_pred, axis=1)
if(genre == "Rock") :
songFont = fontConversionRock(pred)
if(genre == "Pop") :
songFont = fontConversionPop(pred)
if(genre == "Jazz") :
songFont = fontConversionJazz(pred)
if(genre == "Classical") :
songFont = fontConversionClassical(pred)
if(genre == "Metal") :
songFont = fontConversionMetal(pred)
if(genre == "Country") :
songFont = fontConversionCountry(pred)
if(genre == "Reggae") :
songFont = fontConversionReggae(pred)
if(genre == "Hiphop") :
songFont = fontConversionHiphop(pred)
if(genre == "Disco") :
songFont = fontConversionDisco(pred)
if(genre == "Blues") :
songFont = fontConversionBlues(pred)
# Prediction Result
print("Prediction result : " + str(pred))
# Lyrics Extraction
print("Loading Lyrics and Timestamps...")
lrc = syncedlyrics.search("["+artistname+"] ["+songname+"]").splitlines()
timestamps = [x[1:9] for x in lrc]
lyrics = [unidecode(x[11:len(x)]) for x in lrc]
millisec_ts = [int(x[0:2])*60000+int(x[3:5])*1000+int(x[6:9]+"0") for x in timestamps]
print("Lyrics and Timestamps Loaded!")
# Keywords Extraction
result_string = ' '.join(str(element) for element in lyrics)
print(result_string)
keywords = extract_keywords_tfidf(result_string)
nouns = ' '.join(str(element) for element in keywords)
# Image Generation
for c in keywords:
text2image(c, songname)
print("Images generated!")
# Keywords sending
print("Keywords:", nouns)
client.send_message("/keywords", nouns)
print(f"Keywords Sent")
# end keyword extraction
print("Lyrics and Timestamps Loaded!")
# Set the maximum number of characters per OSC message
defaultSize = 40
k = checkSize(lyrics, defaultSize)
if (k!=defaultSize):
for i in range(0,len(lyrics)-k):
k = min(k, checkSize(lyrics[i:k+i], defaultSize))
max_chars_per_message = min(defaultSize,k-1)
# Split lyrics into chunks
lyric_chunks = [lyrics[i:i + max_chars_per_message] for i in range(0, len(lyrics), max_chars_per_message)]
ms_chunks = [millisec_ts[i:i + max_chars_per_message] for i in range(0, len(millisec_ts), max_chars_per_message)]
for idx, chunk in enumerate(ms_chunks):
client.send_message("/timestamps", chunk)
print(f"Timestamps (Chunk {idx + 1}/{len(ms_chunks)}) Sent")
for idx, chunk in enumerate(lyric_chunks):
client.send_message("/lyrics", chunk)
client.send_message("/fontchange", songFont)
print(f"Lyrics (Chunk {idx + 1}/{len(lyric_chunks)}) Sent")
print("All Lyrics and Timestamps Sent")
# Main functions. It waits for osc messages from processing project
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--ip", default="127.0.0.1",
help="The ip of the OSC server")
parser.add_argument("--port", type=int, default=5005,
help="The port the OSC server is listening on")
args = parser.parse_args()
dispatcher = dispatcher.Dispatcher()
dispatcher.map("/load", loadLyrics)
server = osc_server.ThreadingOSCUDPServer((args.ip, args.port), dispatcher)
print("Serving on {}".format(server.server_address))
server.serve_forever()