-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathfeature_extraction.py
147 lines (134 loc) · 6.32 KB
/
feature_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import os
import sys
import time
import tensorflow as tf
slim = tf.contrib.slim
sys.path.insert(0, './slim/')
from nets import inception, resnet_v2
from preprocessing import inception_preprocessing
data_dir = './data'
# dataset needs to be one of ['ILSVRC2012', 'inat2017', 'cub_200', 'flower_102',
# 'stanford_cars', 'stanford_dogs', 'aircraft', 'nabirds', 'food_101']
dataset = 'cub_200'
# base_network needs to be one of ['InceptionV3', 'InceptionV3SE',
# 'InceptionV4', 'InceptionResnetV2', 'InceptionResnetV2SE', 'ResNet50',
# 'ResNet101', 'ResNet152']
base_network = 'InceptionV3'
checkpoints_path = './checkpoints/inception/inception_v3_iNat_299.ckpt'
# base_network = 'ResNet101'
# checkpoints_path = './checkpoints/resnet/resnet_101_ILSVRC_iNat_299.ckpt'
image_size = 299
moving_average_decay = 0.9999
fea_dim = 2048
# Read train and val list.
train_list = []
val_list = []
for line in open(os.path.join(data_dir, dataset, 'train.txt'), 'r'):
train_list.append(
(os.path.join(data_dir, dataset, line.strip().split(': ')[0]),
int(line.strip().split(': ')[1])))
for line in open(os.path.join(data_dir, dataset, 'val.txt'), 'r'):
val_list.append(
(os.path.join(data_dir, dataset, line.strip().split(': ')[0]),
int(line.strip().split(': ')[1])))
print('Length of train: %d' %len(train_list))
print('Length of val: %d' %len(val_list))
# Base network architecture
if base_network == 'InceptionV3':
endpoint = 'Mixed_7c'
arg_scope = inception.inception_v3_arg_scope()
elif base_network == 'InceptionV3SE':
endpoint = 'Mixed_7c'
arg_scope = inception.inception_v3_se_arg_scope()
elif base_network == 'InceptionV4':
endpoint = 'Mixed_7d'
arg_scope = inception.inception_v4_arg_scope()
elif base_network == 'InceptionResnetV2':
endpoint = 'Conv2d_7b_1x1'
arg_scope = inception.inception_resnet_v2_arg_scope()
elif base_network == 'InceptionResnetV2SE':
endpoint = 'Conv2d_7b_1x1'
arg_scope = inception.inception_resnet_v2_se_arg_scope()
elif base_network[:6] == 'ResNet':
layers = base_network.split('ResNet')[1]
base_network = 'ResNet'
# Feature extraction.
fea_train = np.zeros((len(train_list), fea_dim), dtype=np.float32)
label_train = np.zeros((len(train_list), ), dtype=np.int32)
fea_val = np.zeros((len(val_list), fea_dim), dtype=np.float32)
label_val = np.zeros((len(val_list), ), dtype=np.int32)
with tf.Graph().as_default():
tf_global_step = tf.train.get_or_create_global_step()
image_path = tf.placeholder(tf.string)
image = tf.image.decode_jpeg(tf.read_file(image_path), channels=3)
image = tf.image.convert_image_dtype(image, tf.float32)
image = inception_preprocessing.preprocess_image(image,
image_size,
image_size,
is_training=False)
images = tf.expand_dims(image, 0)
if base_network == 'ResNet':
with slim.arg_scope(resnet_v2.resnet_arg_scope(use_batch_norm=True)):
if layers == '50':
net, _ = resnet_v2.resnet_v2_50(images, is_training=False)
elif layers == '101':
net, _ = resnet_v2.resnet_v2_101(images, is_training=False)
elif layers == '152':
net, _ = resnet_v2.resnet_v2_152(images, is_training=False)
else:
with slim.arg_scope(arg_scope):
slim_args = [slim.batch_norm, slim.dropout]
with slim.arg_scope(slim_args, is_training=False):
with tf.variable_scope(base_network, reuse=None) as scope:
if base_network == 'InceptionV3':
net, _ = inception.inception_v3_base(
images, final_endpoint=endpoint, scope=scope)
elif base_network == 'InceptionV3SE':
net, _ = inception.inception_v3_se_base(
images, final_endpoint=endpoint, scope=scope)
elif base_network == 'InceptionV4':
net, _ = inception.inception_v4_base(
images, final_endpoint=endpoint, scope=scope)
elif base_network == 'InceptionResnetV2':
net, _ = inception.inception_resnet_v2_base(
images, final_endpoint=endpoint, scope=scope)
elif base_network == 'InceptionResnetV2SE':
net, _ = inception.inception_resnet_v2_se_base(
images, final_endpoint=endpoint, scope=scope)
net = tf.reduce_mean(net, [0,1,2])
variable_averages = tf.train.ExponentialMovingAverage(
moving_average_decay, tf_global_step)
variables_to_restore = variable_averages.variables_to_restore()
init_fn = slim.assign_from_checkpoint_fn(
checkpoints_path, variables_to_restore)
config_sess = tf.ConfigProto(allow_soft_placement=True)
config_sess.gpu_options.allow_growth = True
with tf.Session(config=config_sess) as sess:
init_fn(sess)
start = time.time()
print('Feature extraction on training set...')
for i in range(len(fea_train)):
if i%1000 == 0:
print('%d/%d %.2fs'%(i, len(fea_train), time.time() - start))
fea = sess.run(net, feed_dict={image_path:train_list[i][0]})
fea_train[i, :] = fea
label_train[i] = train_list[i][1]
print('Feature extraction on validation set...')
for i in range(len(fea_val)):
if i%1000 == 0:
print('%d/%d %.2fs'%(i, len(fea_val), time.time() - start))
fea = sess.run(net, feed_dict={image_path:val_list[i][0]})
fea_val[i, :] = fea
label_val[i] = val_list[i][1]
model_name = checkpoints_path.split('/')[-1].split('.ckpt')[0]
if not os.path.exists(os.path.join('./feature', model_name)):
os.makedirs(os.path.join('./feature', model_name))
save_dir = os.path.join('./feature', model_name, dataset)
np.save(os.path.join(save_dir + '_feature_train.npy'), fea_train)
np.save(os.path.join(save_dir + '_label_train.npy'), label_train)
np.save(os.path.join(save_dir + '_feature_val.npy'), fea_val)
np.save(os.path.join(save_dir + '_label_val.npy'), label_val)