-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprotac_dataset.py
649 lines (564 loc) · 28.7 KB
/
protac_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
from typing import Literal, List, Tuple, Optional, Dict
from collections import defaultdict
import random
import logging
from .data_utils import (
get_fingerprint,
is_active,
load_cell2embedding,
load_protein2embedding,
)
from torch.utils.data import Dataset, DataLoader
from imblearn.over_sampling import SMOTE, ADASYN
from sklearn.preprocessing import StandardScaler, OrdinalEncoder
import numpy as np
import pandas as pd
import pytorch_lightning as pl
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit import DataStructs
class PROTAC_Dataset(Dataset):
def __init__(
self,
protac_df: pd.DataFrame,
protein2embedding: Dict[str, np.ndarray],
cell2embedding: Dict[str, np.ndarray],
smiles2fp: Dict[str, np.ndarray],
use_smote: bool = False,
oversampler: Optional[SMOTE | ADASYN] = None,
active_label: str = 'Active',
disabled_embeddings: List[Literal['smiles', 'poi', 'e3', 'cell']] = [],
scaler: Optional[StandardScaler | Dict[str, StandardScaler]] = None,
use_single_scaler: Optional[bool] = None,
shuffle_embedding_prob: float = 0.0,
):
""" Initialize the PROTAC dataset
Args:
protac_df (pd.DataFrame): The PROTAC dataframe
protein2embedding (dict): Dictionary of protein embeddings
cell2embedding (dict): Dictionary of cell line embeddings
smiles2fp (dict): Dictionary of SMILES to fingerprint
use_smote (bool): Whether to use SMOTE for oversampling
oversampler (SMOTE | ADASYN): The oversampler to use
active_label (str): The column containing the active/inactive information
disabled_embeddings (list): The list of embeddings to disable, i.e., return a zero vector
scaler (StandardScaler | dict): The scaler to use for the embeddings
use_single_scaler (bool): Whether to use a single scaler for all features
shuffle_embedding_prob (float): The probability of shuffling the embeddings. Used for testing whether embeddings act as "barcodes". Defaults to 0.0, i.e., no shuffling.
"""
# Filter out examples with NaN in active_label column
self.data = protac_df # [~protac_df[active_label].isna()]
self.protein2embedding = protein2embedding
self.cell2embedding = cell2embedding
self.smiles2fp = smiles2fp
self.active_label = active_label
self.disabled_embeddings = disabled_embeddings
# Scaling parameters
self.scaler = scaler
self.use_single_scaler = use_single_scaler
self.smiles_emb_dim = smiles2fp[list(smiles2fp.keys())[0]].shape[0]
self.protein_emb_dim = protein2embedding[list(
protein2embedding.keys())[0]].shape[0]
self.cell_emb_dim = cell2embedding[list(
cell2embedding.keys())[0]].shape[0]
self.default_smiles_emb = np.zeros(self.smiles_emb_dim)
self.default_protein_emb = np.zeros(self.protein_emb_dim)
self.default_cell_emb = np.zeros(self.cell_emb_dim)
# Look up the embeddings
self.data = pd.DataFrame({
'Smiles': self.data['Smiles'].apply(lambda x: smiles2fp.get(x, self.default_smiles_emb).astype(np.float32)).tolist(),
'Uniprot': self.data['Uniprot'].apply(lambda x: protein2embedding.get(x, self.default_protein_emb).astype(np.float32)).tolist(),
'E3 Ligase Uniprot': self.data['E3 Ligase Uniprot'].apply(lambda x: protein2embedding.get(x, self.default_protein_emb).astype(np.float32)).tolist(),
'Cell Line Identifier': self.data['Cell Line Identifier'].apply(lambda x: cell2embedding.get(x, self.default_cell_emb).astype(np.float32)).tolist(),
self.active_label: self.data[self.active_label].astype(np.float32).tolist(),
})
# Apply SMOTE
self.use_smote = use_smote
self.oversampler = oversampler
if self.use_smote:
self.apply_smote()
self.shuffle_embedding_prob = shuffle_embedding_prob
if shuffle_embedding_prob > 0.0:
# Set random seed
random.seed(42)
if self.protein_emb_dim != self.cell_emb_dim:
logging.warning('Protein and cell embeddings have different dimensions. Shuffling will be on POI and E3 embeddings only.')
def get_smiles_emb_dim(self):
return self.smiles_emb_dim
def get_protein_emb_dim(self):
return self.protein_emb_dim
def get_cell_emb_dim(self):
return self.cell_emb_dim
def apply_smote(self):
# Prepare the dataset for SMOTE
features = []
labels = []
for _, row in self.data.iterrows():
features.append(np.hstack([
row['Smiles'],
row['Uniprot'],
row['E3 Ligase Uniprot'],
row['Cell Line Identifier'],
]))
labels.append(row[self.active_label])
# Convert to numpy array
features = np.array(features).astype(np.float32)
labels = np.array(labels).astype(np.float32)
# Initialize SMOTE and fit
if self.oversampler is None:
oversampler = SMOTE(random_state=42)
else:
oversampler = self.oversampler
features_smote, labels_smote = oversampler.fit_resample(features, labels)
# Separate the features back into their respective embeddings
smiles_embs = features_smote[:, :self.smiles_emb_dim]
poi_embs = features_smote[:,
self.smiles_emb_dim:self.smiles_emb_dim+self.protein_emb_dim]
e3_embs = features_smote[:, self.smiles_emb_dim +
self.protein_emb_dim:self.smiles_emb_dim+2*self.protein_emb_dim]
cell_embs = features_smote[:, -self.cell_emb_dim:]
# Reconstruct the dataframe with oversampled data
df_smote = pd.DataFrame({
'Smiles': list(smiles_embs),
'Uniprot': list(poi_embs),
'E3 Ligase Uniprot': list(e3_embs),
'Cell Line Identifier': list(cell_embs),
self.active_label: labels_smote
})
self.data = df_smote
def fit_scaling(self, use_single_scaler: bool = False, **scaler_kwargs) -> dict:
""" Fit the scalers for the data and save them in the dataset class.
Args:
use_single_scaler (bool): Whether to use a single scaler for all features.
scaler_kwargs: Keyword arguments for the StandardScaler.
Returns:
dict: The fitted scalers.
"""
if use_single_scaler:
self.use_single_scaler = True
self.scaler = StandardScaler(**scaler_kwargs)
embeddings = np.hstack([
np.array(self.data['Smiles'].tolist()),
np.array(self.data['Uniprot'].tolist()),
np.array(self.data['E3 Ligase Uniprot'].tolist()),
np.array(self.data['Cell Line Identifier'].tolist()),
])
self.scaler.fit(embeddings)
return self.scaler
else:
self.use_single_scaler = False
scalers = {}
scalers['Smiles'] = StandardScaler(**scaler_kwargs)
scalers['Uniprot'] = StandardScaler(**scaler_kwargs)
scalers['E3 Ligase Uniprot'] = StandardScaler(**scaler_kwargs)
scalers['Cell Line Identifier'] = StandardScaler(**scaler_kwargs)
scalers['Smiles'].fit(np.stack(self.data['Smiles'].to_numpy()))
scalers['Uniprot'].fit(np.stack(self.data['Uniprot'].to_numpy()))
scalers['E3 Ligase Uniprot'].fit(np.stack(self.data['E3 Ligase Uniprot'].to_numpy()))
scalers['Cell Line Identifier'].fit(np.stack(self.data['Cell Line Identifier'].to_numpy()))
self.scaler = scalers
return scalers
def apply_scaling(self, scalers: dict, use_single_scaler: bool = False):
""" Apply scaling to the data.
Args:
scalers (dict): The scalers for each feature.
use_single_scaler (bool): Whether to use a single scaler for all features.
"""
if use_single_scaler:
embeddings = np.hstack([
np.array(self.data['Smiles'].tolist()),
np.array(self.data['Uniprot'].tolist()),
np.array(self.data['E3 Ligase Uniprot'].tolist()),
np.array(self.data['Cell Line Identifier'].tolist()),
])
scaled_embeddings = scalers.transform(embeddings)
self.data = pd.DataFrame({
'Smiles': list(scaled_embeddings[:, :self.smiles_emb_dim]),
'Uniprot': list(scaled_embeddings[:, self.smiles_emb_dim:self.smiles_emb_dim+self.protein_emb_dim]),
'E3 Ligase Uniprot': list(scaled_embeddings[:, self.smiles_emb_dim+self.protein_emb_dim:self.smiles_emb_dim+2*self.protein_emb_dim]),
'Cell Line Identifier': list(scaled_embeddings[:, -self.cell_emb_dim:]),
self.active_label: self.data[self.active_label]
})
else:
# Check if the self.data[<column>] data contains only binary values
# (0 or 1). If so, do not apply scaling.
for feature in ['Smiles', 'Uniprot', 'E3 Ligase Uniprot', 'Cell Line Identifier']:
feature_array = np.array(self.data[feature].tolist())
if np.all(np.isin(feature_array, [0, 1])):
continue
self.data[feature] = self.data[feature].apply(lambda x: scalers[feature].transform(x[np.newaxis, :])[0])
def get_numpy_arrays(self, component: Optional[str] = None) -> Tuple[np.ndarray, np.ndarray]:
""" Get the numpy arrays for the dataset.
Args:
component (str): The component to get the numpy arrays for. Defaults to None, i.e., get a single stacked array.
Returns:
tuple: The numpy arrays for the dataset. The first element is the input array, and the second element is the output array.
"""
if component is not None:
X = np.array(self.data[component].tolist()).copy()
else:
X = np.hstack([
np.array(self.data['Smiles'].tolist()),
np.array(self.data['Uniprot'].tolist()),
np.array(self.data['E3 Ligase Uniprot'].tolist()),
np.array(self.data['Cell Line Identifier'].tolist()),
]).copy()
y = self.data[self.active_label].values.copy()
return X, y
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if 'smiles' in self.disabled_embeddings:
# Get a zero vector for the fingerprint
smiles_emb = np.zeros(self.smiles_emb_dim).astype(np.float32)
# TODO: Remove random sampling in the future
# # Uniformly sample a binary vector for the fingerprint
# smiles_emb = np.random.randint(0, 2, size=self.smiles_emb_dim).astype(np.float32)
# if not self.use_single_scaler and self.scaler is not None:
# smiles_emb = smiles_emb[np.newaxis, :]
# smiles_emb = self.scaler['Smiles'].transform(smiles_emb).flatten()
else:
smiles_emb = self.data['Smiles'].iloc[idx]
if 'poi' in self.disabled_embeddings:
poi_emb = np.zeros(self.protein_emb_dim).astype(np.float32)
# TODO: Remove random sampling in the future
# # Uniformly sample a vector for the protein
# poi_emb = np.random.rand(self.protein_emb_dim).astype(np.float32)
# if not self.use_single_scaler and self.scaler is not None:
# poi_emb = poi_emb[np.newaxis, :]
# poi_emb = self.scaler['Uniprot'].transform(poi_emb).flatten()
else:
poi_emb = self.data['Uniprot'].iloc[idx]
if 'e3' in self.disabled_embeddings:
e3_emb = np.zeros(self.protein_emb_dim).astype(np.float32)
# TODO: Remove random sampling in the future
# # Uniformly sample a vector for the E3 ligase
# e3_emb = np.random.rand(self.protein_emb_dim).astype(np.float32)
# if not self.use_single_scaler and self.scaler is not None:
# # Add extra dimension for compatibility with the scaler
# e3_emb = e3_emb[np.newaxis, :]
# e3_emb = self.scaler['E3 Ligase Uniprot'].transform(e3_emb)
# e3_emb = e3_emb.flatten()
else:
e3_emb = self.data['E3 Ligase Uniprot'].iloc[idx]
if 'cell' in self.disabled_embeddings:
cell_emb = np.zeros(self.cell_emb_dim).astype(np.float32)
# TODO: Remove random sampling in the future
# # Uniformly sample a vector for the cell line
# cell_emb = np.random.rand(self.cell_emb_dim).astype(np.float32)
# if not self.use_single_scaler and self.scaler is not None:
# cell_emb = cell_emb[np.newaxis, :]
# cell_emb = self.scaler['Cell Line Identifier'].transform(cell_emb).flatten()
else:
cell_emb = self.data['Cell Line Identifier'].iloc[idx]
# Shuffle the embeddings if the probability is met
if random.random() < self.shuffle_embedding_prob:
if self.protein_emb_dim == self.cell_emb_dim:
# Randomly shuffle the embeddings for POI, cell, and E3
embeddings = np.vstack([poi_emb, e3_emb, cell_emb])
np.random.shuffle(embeddings)
poi_emb, e3_emb, cell_emb = embeddings
else:
# Swap POI and E3 embeddings only, because of different dimensions
poi_emb, e3_emb = e3_emb, poi_emb
elem = {
'smiles_emb': smiles_emb,
'poi_emb': poi_emb,
'e3_emb': e3_emb,
'cell_emb': cell_emb,
'active': self.data[self.active_label].iloc[idx],
}
return elem
def get_datasets(
train_df: pd.DataFrame,
val_df: pd.DataFrame,
test_df: Optional[pd.DataFrame] = None,
protein2embedding: Dict = None,
cell2embedding: Dict = None,
smiles2fp: Dict = None,
smote_k_neighbors: int = 5,
active_label: str = 'Active',
disabled_embeddings: List[Literal['smiles', 'poi', 'e3', 'cell']] = [],
scaler: Optional[StandardScaler | Dict[str, StandardScaler]] = None,
use_single_scaler: Optional[bool] = None,
apply_scaling: bool = False,
shuffle_embedding_prob: float = 0.0,
) -> Tuple[PROTAC_Dataset, PROTAC_Dataset, Optional[PROTAC_Dataset]]:
""" Get the datasets for training the PROTAC model.
Args:
train_df (pd.DataFrame): The training data.
val_df (pd.DataFrame): The validation data.
test_df (pd.DataFrame): The test data.
protein2embedding (dict): Dictionary of protein embeddings.
cell2embedding (dict): Dictionary of cell line embeddings.
smiles2fp (dict): Dictionary of SMILES to fingerprint.
use_smote (bool): Whether to use SMOTE for oversampling.
smote_k_neighbors (int): The number of neighbors to use for SMOTE.
active_label (str): The active label column.
disabled_embeddings (list): The list of embeddings to disable.
scaler (StandardScaler | dict): The scaler to use for the embeddings.
use_single_scaler (bool): Whether to use a single scaler for all features.
apply_scaling (bool): Whether to apply scaling to the data now. Defaults to False (the Pytorch Lightning model does that).
"""
if smote_k_neighbors:
oversampler = SMOTE(k_neighbors=smote_k_neighbors, random_state=42)
else:
oversampler = None
train_ds = PROTAC_Dataset(
train_df,
protein2embedding,
cell2embedding,
smiles2fp,
use_smote=True if smote_k_neighbors else False,
oversampler=oversampler,
active_label=active_label,
disabled_embeddings=disabled_embeddings,
scaler=scaler,
use_single_scaler=use_single_scaler,
shuffle_embedding_prob=shuffle_embedding_prob,
)
val_ds = PROTAC_Dataset(
val_df,
protein2embedding,
cell2embedding,
smiles2fp,
active_label=active_label,
disabled_embeddings=disabled_embeddings,
scaler=train_ds.scaler if train_ds.scaler is not None else scaler,
use_single_scaler=train_ds.use_single_scaler if train_ds.use_single_scaler is not None else use_single_scaler,
)
train_scalers = None
if apply_scaling:
train_scalers = train_ds.fit_scaling(use_single_scaler=use_single_scaler)
val_ds.apply_scaling(train_scalers, use_single_scaler=use_single_scaler)
if test_df is not None:
test_ds = PROTAC_Dataset(
test_df,
protein2embedding,
cell2embedding,
smiles2fp,
active_label=active_label,
disabled_embeddings=disabled_embeddings,
scaler=train_scalers if apply_scaling else scaler,
use_single_scaler=train_ds.use_single_scaler if train_ds.use_single_scaler is not None else use_single_scaler,
)
if apply_scaling:
test_ds.apply_scaling(train_ds.scaler, use_single_scaler=use_single_scaler)
else:
test_ds = None
return train_ds, val_ds, test_ds
class PROTAC_DataModule(pl.LightningDataModule):
""" PyTorch Lightning DataModule for the PROTAC dataset.
TODO: Work in progress. It would be nice to wrap all information into a
single class, but it is not clear how to do it yet due to cross-validation
and the need to split the data into training, validation, and test sets
accordingly.
Args:
protac_csv_filepath (str): The path to the PROTAC CSV file.
protein2embedding_filepath (str): The path to the protein to embedding dictionary.
cell2embedding_filepath (str): The path to the cell line to embedding dictionary.
pDC50_threshold (float): The threshold for the pDC50 value to consider a PROTAC active.
Dmax_threshold (float): The threshold for the Dmax value to consider a PROTAC active.
use_smote (bool): Whether to use SMOTE for oversampling.
smote_k_neighbors (int): The number of neighbors to use for SMOTE.
active_label (str): The column containing the active/inactive information.
disabled_embeddings (list): The list of embeddings to disable.
scaler (StandardScaler | dict): The scaler to use for the embeddings.
use_single_scaler (bool): Whether to use a single scaler for all features.
"""
def __init__(
self,
protac_csv_filepath: str,
protein2embedding_filepath: str,
cell2embedding_filepath: str,
pDC50_threshold: float = 6.0,
Dmax_threshold: float = 0.6,
use_smote: bool = True,
smote_k_neighbors: int = 5,
active_label: str = 'Active',
disabled_embeddings: List[Literal['smiles', 'poi', 'e3', 'cell']] = [],
scaler: Optional[StandardScaler | Dict[str, StandardScaler]] = None,
use_single_scaler: Optional[bool] = None,
):
super(PROTAC_DataModule, self).__init__()
# Load the PROTAC dataset
self.protac_df = pd.read_csv('../data/PROTAC-Degradation-DB.csv')
# Map E3 Ligase Iap to IAP
self.protac_df['E3 Ligase'] = self.protac_df['E3 Ligase'].str.replace('Iap', 'IAP')
self.protac_df[active_label] = self.protac_df.apply(
lambda x: is_active(
x['DC50 (nM)'],
x['Dmax (%)'],
pDC50_threshold=pDC50_threshold,
Dmax_threshold=Dmax_threshold,
),
axis=1,
)
self.smiles2fp, self.protac_df = self.get_smiles2fp_and_avg_tanimoto(self.protac_df)
self.active_df = self.protac_df[self.protac_df[active_label].notna()].copy()
# Load embedding dictionaries
self.protein2embedding = load_protein2embedding(protein2embedding_filepath)
self.cell2embedding = load_cell2embedding(cell2embedding_filepath)
def setup(self, stage: str):
self.train_ds, self.val_ds, self.test_ds = get_datasets(
self.train_df,
self.val_df,
self.test_df,
self.protein2embedding,
self.cell2embedding,
self.smiles2fp,
use_smote=self.use_smote,
smote_k_neighbors=self.smote_k_neighbors,
active_label=self.active_label,
disabled_embeddings=self.disabled_embeddings,
scaler=self.scaler,
use_single_scaler=self.use_single_scaler,
)
def train_dataloader(self):
return DataLoader(self.train_ds, batch_size=32, shuffle=True)
def val_dataloader(self):
return DataLoader(self.val_ds, batch_size=32)
def test_dataloader(self):
return DataLoader(self.test_ds, batch_size=32)
@staticmethod
def get_random_split_indices(active_df: pd.DataFrame, test_split: float) -> pd.Index:
""" Get the indices of the test set using a random split.
Args:
active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
test_split (float): The percentage of the active PROTACs to use as the test set.
Returns:
pd.Index: The indices of the test set.
"""
return active_df.sample(frac=test_split, random_state=42).index
@staticmethod
def get_e3_ligase_split_indices(active_df: pd.DataFrame) -> pd.Index:
""" Get the indices of the test set using the E3 ligase split.
Args:
active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
Returns:
pd.Index: The indices of the test set.
"""
encoder = OrdinalEncoder()
active_df['E3 Group'] = encoder.fit_transform(active_df[['E3 Ligase']]).astype(int)
test_df = active_df[(active_df['E3 Ligase'] != 'VHL') & (active_df['E3 Ligase'] != 'CRBN')]
return test_df.index
@staticmethod
def get_smiles2fp_and_avg_tanimoto(protac_df: pd.DataFrame) -> tuple:
""" Get the SMILES to fingerprint dictionary and the average Tanimoto similarity.
Args:
protac_df (pd.DataFrame): The DataFrame containing the PROTACs.
Returns:
tuple: The SMILES to fingerprint dictionary and the average Tanimoto similarity.
"""
unique_smiles = protac_df['Smiles'].unique().tolist()
smiles2fp = {}
for smiles in unique_smiles:
smiles2fp[smiles] = get_fingerprint(smiles)
tanimoto_matrix = defaultdict(list)
fps = list(smiles2fp.values())
# Compute all-against-all Tanimoto similarity using BulkTanimotoSimilarity
for i, (smiles1, fp1) in enumerate(zip(unique_smiles, fps)):
similarities = DataStructs.BulkTanimotoSimilarity(fp1, fps[i:]) # Only compute for i to end, avoiding duplicates
for j, similarity in enumerate(similarities):
distance = 1 - similarity
tanimoto_matrix[smiles1].append(distance) # Store as distance
if i != i + j:
tanimoto_matrix[unique_smiles[i + j]].append(distance) # Symmetric filling
# Calculate average Tanimoto distance for each unique SMILES
avg_tanimoto = {k: np.mean(v) for k, v in tanimoto_matrix.items()}
protac_df['Avg Tanimoto'] = protac_df['Smiles'].map(avg_tanimoto)
smiles2fp = {s: np.array(fp) for s, fp in smiles2fp.items()}
return smiles2fp, protac_df
@staticmethod
def get_tanimoto_split_indices(
active_df: pd.DataFrame,
active_label: str,
test_split: float,
n_bins_tanimoto: int = 200,
) -> pd.Index:
""" Get the indices of the test set using the Tanimoto-based split.
Args:
active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
n_bins_tanimoto (int): The number of bins to use for the Tanimoto similarity.
Returns:
pd.Index: The indices of the test set.
"""
tanimoto_groups = pd.cut(active_df['Avg Tanimoto'], bins=n_bins_tanimoto).copy()
encoder = OrdinalEncoder()
active_df['Tanimoto Group'] = encoder.fit_transform(tanimoto_groups.values.reshape(-1, 1)).astype(int)
# Sort the groups so that samples with the highest tanimoto similarity,
# i.e., the "less similar" ones, are placed in the test set first
tanimoto_groups = active_df.groupby('Tanimoto Group')['Avg Tanimoto'].mean().sort_values(ascending=False).index
test_df = []
# For each group, get the number of active and inactive entries. Then, add those
# entries to the test_df if: 1) the test_df lenght + the group entries is less
# 20% of the active_df lenght, and 2) the percentage of True and False entries
# in the active_label in test_df is roughly 50%.
for group in tanimoto_groups:
group_df = active_df[active_df['Tanimoto Group'] == group]
if test_df == []:
test_df.append(group_df)
continue
num_entries = len(group_df)
num_active_group = group_df[active_label].sum()
num_inactive_group = num_entries - num_active_group
tmp_test_df = pd.concat(test_df)
num_entries_test = len(tmp_test_df)
num_active_test = tmp_test_df[active_label].sum()
num_inactive_test = num_entries_test - num_active_test
# Check if the group entries can be added to the test_df
if num_entries_test + num_entries < test_split * len(active_df):
# Add anything at the beggining
if num_entries_test + num_entries < test_split / 2 * len(active_df):
test_df.append(group_df)
continue
# Be more selective and make sure that the percentage of active and
# inactive is balanced
if (num_active_group + num_active_test) / (num_entries_test + num_entries) < 0.6:
if (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) < 0.6:
test_df.append(group_df)
test_df = pd.concat(test_df)
return test_df.index
@staticmethod
def get_target_split_indices(active_df: pd.DataFrame, active_label: str, test_split: float) -> pd.Index:
""" Get the indices of the test set using the target-based split.
Args:
active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
active_label (str): The column containing the active/inactive information.
test_split (float): The percentage of the active PROTACs to use as the test set.
Returns:
pd.Index: The indices of the test set.
"""
encoder = OrdinalEncoder()
active_df['Uniprot Group'] = encoder.fit_transform(active_df[['Uniprot']]).astype(int)
test_df = []
# For each group, get the number of active and inactive entries. Then, add those
# entries to the test_df if: 1) the test_df lenght + the group entries is less
# 20% of the active_df lenght, and 2) the percentage of True and False entries
# in the active_label in test_df is roughly 50%.
# Start the loop from the groups containing the smallest number of entries.
for group in reversed(active_df['Uniprot'].value_counts().index):
group_df = active_df[active_df['Uniprot'] == group]
if test_df == []:
test_df.append(group_df)
continue
num_entries = len(group_df)
num_active_group = group_df[active_label].sum()
num_inactive_group = num_entries - num_active_group
tmp_test_df = pd.concat(test_df)
num_entries_test = len(tmp_test_df)
num_active_test = tmp_test_df[active_label].sum()
num_inactive_test = num_entries_test - num_active_test
# Check if the group entries can be added to the test_df
if num_entries_test + num_entries < test_split * len(active_df):
# Add anything at the beggining
if num_entries_test + num_entries < test_split / 2 * len(active_df):
test_df.append(group_df)
continue
# Be more selective and make sure that the percentage of active and
# inactive is balanced
if (num_active_group + num_active_test) / (num_entries_test + num_entries) < 0.6:
if (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) < 0.6:
test_df.append(group_df)
test_df = pd.concat(test_df)
return test_df.index