-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDinic.rhs
124 lines (110 loc) · 2.77 KB
/
Dinic.rhs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
// boj.kr/2188
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <vector>
#include <queue>
#define NM 100005
#define INF 0x7fffffff
#define FOR(i,n,m) for (int i=(n);i<=(m);i++)
#define si(n) fscanf(in,"%d",&n)
#pragma warning(disable:4996)
typedef long long int ll;
using namespace std;
//FILE *in = fopen("../input.txt", "r"), *out = fopen("output.txt", "w");
//FILE *in = fopen("../input.txt", "r"), *out = stdout;
FILE* in = stdin, * out = stdout;
struct Dinic {
private:
struct Edge {
int idx, c;
Edge() {}
Edge(int idx, int c) : idx(idx), c(c) {}
};
int n, source, sink, visitNum;
vector<Edge> edges;
vector<vector<int> > graph;
vector<int> level;
bool bfs() {
fill(level.begin(), level.end(), -1);
queue<int> Q;
Q.push(source);
level[source] = 0;
while (!Q.empty()) {
int x = Q.front();
Q.pop();
for (int &eIdx: graph[x]) {
const Edge &e = edges[eIdx];
int y = e.idx;
int c = e.c;
if (level[y] != -1 || c == 0) continue;
Q.push(y);
level[y] = level[x] + 1;
}
}
return level[sink] != -1;
}
int dfs(int cur, int cap) {
if (cur == sink) return cap;
for (int &eIdx: graph[cur]) {
Edge &e = edges[eIdx];
if (!(e.c > 0 && level[e.idx] == level[cur] + 1)) continue;
int _cap = dfs(e.idx, min(cap, e.c));
if (_cap == 0) continue;
edges[eIdx].c -= _cap;
edges[eIdx ^ 1].c += _cap;
return _cap;
}
return 0;
}
public:
Dinic() {
n = source = sink = 0;
graph.clear();
}
Dinic(int n, int source, int sink) : n(n), source(source), sink(sink) {
graph.resize(n + 1);
level.resize(n + 1);
FOR (i, 0, n) graph[i].clear();
}
void addEdge(int x, int y, int c) {
graph[x].push_back(edges.size());
edges.push_back(Edge(y, c));
graph[y].push_back(edges.size());
edges.push_back(Edge(x, 0));
}
int solve() {
int flow = 0, res;
while (bfs()){
while ((res = dfs(source, INF)) != 0) {
flow += res;
}
}
return flow;
}
};
int n, m;
Dinic dinic;
void input(){
si(n), si(m);
dinic = Dinic(n + m + 2, 0, n+m+1);
FOR (i,1,n){
int x; si(x);
dinic.addEdge(0, i, 1);
FOR (j,1,x) {
int y;
si(y);
dinic.addEdge(i, n + y, 1);
}
}
FOR (i,1,m) dinic.addEdge(n+i, n+m+1, 1);
}
void pro(){
fprintf(out,"%d\n",dinic.solve());
}
int main(){
input();
pro();
return 0;
}