-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdataset_loader.py
43 lines (40 loc) · 1.73 KB
/
dataset_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from torchvision import transforms, datasets
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
def get_train_loader(configs):
# data transforms
transform_train = transforms.Compose([
transforms.RandomCrop(configs.img_size, padding=4),
transforms.ToTensor(),
transforms.Normalize(configs.mean, configs.std)
])
trainset = datasets.CIFAR100(root='./data/cifar100',
train=True,
download=True,
transform=transform_train)
# get dataloader
train_sampler = RandomSampler(trainset)
train_loader = DataLoader(trainset,
sampler=train_sampler,
batch_size=configs.batch_size,
num_workers=configs.num_workers,
pin_memory=configs.pin_memory)
return train_loader
def get_test_loader(configs):
# data transforms
transform_test = transforms.Compose([
transforms.Resize((configs.img_size, configs.img_size)),
transforms.ToTensor(),
transforms.Normalize(configs.mean, configs.std)
])
testset = datasets.CIFAR100(root='./data/cifar100',
train=False,
download=True,
transform=transform_test)
# get dataloader
test_sampler = SequentialSampler(testset)
test_loader = DataLoader(testset,
sampler=test_sampler,
batch_size=configs.eval_batch_size,
num_workers=configs.num_workers,
pin_memory=configs.pin_memory)
return test_loader