
Ren

Code Assessment

Hyperdrive

PwC Switzerland
May 26, 2020

Contents
1 Executive Summary 3
2 Assessment Overview 4
3 Limitations and use of report 8
4 Terminology 9
5 Findings 10
6 Resolved Findings 12

2
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Dappbase Pte. Ltd.
#19-08 Prudential Tower, 30 Cecil Street
049712 Singapore

1 Executive Summary
Dear Loong,
First and foremost we would like to thank Ren for giving us the opportunity to assess the current
state of their Hyperdrive system. This document outlines the findings, limitations, and methodology
of our assessment.
PwC Switzerland was tasked by Ren to perform a code assessment of the Hyperdrive project.
Hyperdrive is a novel consensus engine that combines tendermint-style consensus with two new
features: fast-forwarding and rebasing. A consensus engine is a critical component in building a
decentralized system. However, further components are needed. In the case of Hyperdrive the
following components need to be added: networking, data storage, transaction structure, block
structure, and the respective validation functions. Hence, this report cannot determine the overall
security of a system built upon Hyperdrive as it is only concerned with Hyperdrive itself.
Furthermore, the usability and stability of the Hyperdrive features depend on the way that the
previously mentioned components are implemented and integrated. The fast-forwarding feature
allows a special operation that most blockchains do not support: jumping ahead without the need to
verify intermediate blocks. This also implies that a local node does not necessarily guarantee
traceability as it might not hold all blocks. Furthermore, fast-forwarding requires a state transfer
which implies that this transfer needs to be feasible size-wise.
During the assessment several findings were discovered. Almost all were resolved and can be seen
in the Resolved Findings section. Only one low-severity finding, which is common to this type of
consensus protocols, was not addressed. Due to the complexity of consensus algorithms in
general, there is an inherent risk that more issues exist in the implementation. Previous examples of
consensus mistakes being discovered after more than a decade 2, highlight how difficult they are to
secure given their complex states. We hence recommend the use of a complex test suite, e.g.
Twins 2.
We hope that this assessment provides more insight into the current implementation and provides
valuable findings. We are happy to receive questions and feedback to improve our service and are
highly committed to further support your project.
Yours sincerely,
PricewaterhouseCoopers AG

Andreas Eschbach Hubert Ritzdorf

PricewaterhouseCoopers Ltd, Birchstrasse 160, Postfach, CH-8050 Zürich, Switzerland
Telephone: +41 58 792 44 00, Facsimile: +41 58 792 44 10, www.pwc.ch
PricewaterhouseCoopers Ltd is a member of the global PricewaterhouseCoopers network of firms, each of which is a separate and independent legal entity.

2 Assessment Overview
In this section we briefly describe the overall structure and scope of the engagement including the
code commit which is referenced throughout this report.

2.1 Scope
The general scope of the assessment is set out in our engagement letter with Ren dated March 10,
2020. The assessment was performed on the source code files inside the Hyperdrive repository
based on the documentation files. The table below indicates the code versions relevant to this
report and when they were received.

Date Commit Hash Note
March 11, 2020 81f40ed84800a36d457fe21b22758a022e7bc79a First Version
March 25, 2020 f12dec56d5e83d8e0ea2cc44316e8b8f9c10953d After First Report
May 4, 2020 edcc757304b2375c6ed6674c74c06edfebd2aff3 After Second Report
May 21, 2020 1357f1878365b9e3ad7d1957b41037652dc496e5 After Further Comments

2.1.1 Excluded from scope
The surge library for marshalling and unmarshalling is excluded from the scope as it was added
during the process of the engagement.

2.2 System Overview
The hyperdrive package implements the consensus algorithm described in the paper The latest
gossip on BFT consensus 1. Some additional features, namely fast-forwarding and rebasing have
been added.
Hyperdrive is designed in order to be agnostic towards the structure of transactions or blocks.
Therefore anyone may use this consensus package. A core use case is its usage in the RenVM
implementation.
The hyperdrive package interacts with other components. In particular it relies on the existence of a
peer-to-peer network with broadcast capabilities and a storage interface for the state.
The implemented consensus algorithm has the fairly well-known properties of byzantine fault
tolerance. The nodes participating in the current consensus are called signatories. Based on the
existence of 3f+1 signatories with a maximum of f malicious or faulty nodes, consensus on
abstract data can be reached. Participating nodes only need to know the latest block to be able to
participate in the consensus for the next block.

2.3 Terminology
In the following part we introduce some terminology that is relevant for this report.

4
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

2.3.1 Blocks
Blockchains using the hyperdrive consensus implementation know 3 types of blocks:
standard

Standard blocks are the most common blocks in the system, containing application specific
data like transactions.

rebase

Rebase blocks initiate the change of signatories that govern the consensus algorithm.
base

Base blocks finalize the change of signatories.
Important terms in connection with a block are height and round. The height is the number of the
block. The blockchain starts at block height 0, the first block is a base block containing the initial
signatories. The next block is at height 1. At each height, there may be one or more rounds needed
until consensus has been reached. At each new block height, round 0 starts to find consensus. In
case no consensus has been reached (this can be the case if more than 2f precommits for nil
have been received at this height and round), the scheduled proposer failed to propose the next
block.
A new round at this height is invoked where the next proposer is tasked to propose a new block.
This continues until consensus at this height has been found, then the consensus for the next
height starts again at round 0.

2.3.2 Messages
To reach consensus about the next block, different types of messages are exchanged over the
network:
Propose

The scheduled proposer at the current height & round crafts a new propose message. This
message is a proposal for the next block.

Prevote

Signatories react to propose message for the current height & round by sending a prevote
message.

Precommit

Upon having received enough prevotes for a certain block proposal, signatories precommit for
this block if they find the block to be valid.

All messages are for a specific blockhash (or invalid hash) and a specific height & round.
Additionally, Resync messages have been introduced. These messages are used to query others
for previously sent messages after a node recovers from a crash.
prevote nil and precommit nil are the terms used to vote against a proposal at a certain
height or round. These are simply messages for the invalid blockhash and are used if the node
does not agree with the proposal or if it has not received enough messages before the timeout
elapsed.
fast-forward: Nodes that have fallen out-of-sync are able to fast-forward to the latest block by
receiving the latest block the consensus has agreed on, endorsed by sufficient (2f+1) precommits.
These information are included in the proposal message. Only the latest block is required in order to

5
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

participate in the consensus for the next height. Note that in case of fast-forwarding, if required, the
missing blocks have to be synced separately.
rebase: A rebase is the process of changing the signatories of the consensus. A rebase block
including the new set of signatories is proposed and if accepted immediately followed by a base
block enabling the new signatories.
Replica: A Replica represents one process of the hyperdrive consensus algorithm, a replicated
state machine. Each replica is bound to a specific shard. It takes part in the hyperdrive consensus
and sends and receives messages.

2.3.3 Roles
Signatories

Set of chosen signatories taking part in the consensus process.
Proposer

The proposer is the signatory chosen by the scheduler to propose the next block at a specific
height and round.

Scheduler

Algorithm responsible to return the signatory to propose a block at a specific height & round.
Observer

An observer may be called upon certain events:
• DidCommitBlock()
• DidReceiveSufficientNilPrevotes()

Additionally, a boolean IsSignatory indicates the current state of the observer
Validator

A validator exposes IsBlockValid to hyperdrive. This function is used to validate a block. It's
of paramount importance that this function is correctly implemented. This is because
Hyperdrive trusts this function totally.

shardRebaser

Each replica has it's shardRebaser tasked to handle a rebase
Broadcaster

The Broadcaster is responsible to distribute the messages of these nodes throughout the
network. The implementation is not defined by the hyperdrive package and may vary. For the
functional correctness of the hyperdrive algorithm it is important that messages crafted
and broadcasted by this very node also arrive and are processed at this node. In
particular a crafted and broadcasted proposal by a node must also arrive at the sending node to
trigger a prevote message. Similarly for other message types, these need to arrive at their
originating node as well to trigger important functionality like counting for the 2f+1 prevotes.
Otherwise, in the case of exactly f adversaries (the maximum) only 2f prevotes would be
emitted and arrive at the nodes - insufficient to pass the barrier of 2f+1 to generate a
precommit.

2.3.4 Overview of the consensus process
To be able to participate in the consensus about the next block a node only needs to know the latest
valid block and the current signatories.

6
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Upon the start of a new round of consensus, the proposer (the scheduled signatory) crafts and
broadcasts a new block proposal. All other nodes invoke a timeout and - in case - no proposal
arrives, they will automatically prevote nil. This guarantees that the consensus is not blocked
upon a single missing proposal.
Upon processing a proposal messages for the current height & round, signatories either accept it
and endorse it by prevoting for this blockhash or prevote nil to oppose this block. Next, nodes
collect 2f+1 prevotes in order to send out a precommit.
Once 2f+1 precommit messages for a blockhash at a certain height & round are reached, the
proposed block is accepted and a new round at the next height is started once a node has received
enough precommits.
Messages may arrive out-of-order or fail to arrive completely due to various reasons such as
network congestion or network partition. All received messages are stored in an Inbox and are
counted. This ensures that all relevant messages are counted when a node decides on its actions,
even in case these messages arrive out-of-order.

2.3.5 Trust Model
This Byzantine Fault Tolerant consensus algorithm handles up to f out of 3f+1 malicious / offline
signatories. A particular signatory is not necessarily trusted. The code using the hyperdrive package
is assumed to be non-malicious. As a special feature, some of the 2f+1 honest nodes, might
temporarily crash, but the consensus can recover using the Resync messages.

7
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

3 Limitations and use of report
3.1 Inherent limitations
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional
security measures are necessary. In most cases, applications are either fully protected against a
certain type of attack, or they are completely unprotected against it. Some of the issues may affect
the entire application, while some lack protection only in certain areas. This is why we carry out a
source code assessment aimed at determining all locations that need to be fixed. Within the
customer-determined time frame, PwC Switzerland has performed an assessment in order to
discover as many vulnerabilities as possible.
The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting
the criteria predefined in the business specification. We draw attention to the fact that due to
inherent limitations in any software development process and software product an inherent risk
exists that even major failures or malfunctions can remain undetected. Further uncertainties exist in
any software product or application used during the development, which itself cannot be free from
any error or failures. These preconditions can have an impact on the system's code and/or
functions and/or operation. We did not assess the underlying third party infrastructure which adds
further inherent risks as we rely on the correct execution of the included third party technology stack
itself. Report readers should also take into account the facts that over the life cycle of any software
product changes to the product itself or to its environment, in which it is operated, can have an
impact leading to operational behaviours other than initially determined in the business
specification.

3.2 Restriction of use and purpose of the report
Our report is intended solely for Ren for use in connection with the purpose as described in the
preceding paragraph. Our report should not be distributed to or used by parties other than Ren or
used for any other purpose. We do not, in giving our opinion, accept or assume responsibility or
liability for any other purpose or to any other parties to whom our report is shown or into whose
hands it may come.

8
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of
our findings, we determine the likelihood and impact (according to the CVSS risk rating
methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice
• Impact specifies the technical and business-related consequences of a finding
• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These
severities are derived from the likelihood and the impact using the following table, following a
standard risk assessment procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified
as critical. Intuitively, such findings are likely to be triggered and cause significant disruption.
Overall, the severity correlates with the associated risk. However, every finding's risk should always
be closely checked, regardless of severity.

9
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

5 Findings
In this section, we describe any open findings. Findings that have been resolved, have been moved
to the Resolved Findings section. All of the findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors
• Design : Architectural shortcomings and design inefficiencies
• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Risk AcceptedConsensus is not resilient due to single point of failure

Security Low Risk Accepted
5.1 Consensus is not resilient due to single
point of failure
For the network to move on, the consensus algorithm needs to agree on new blocks. In each height
and round however there is a single point of failure: the scheduled proposer. If the scheduled
proposer fails to propose, the consensus moves on to the next round at this height, but does not
agree on the next block. At the next round, the next scheduled proposer is tasked to propose.
As the scheduler must be known to all participants, an attacker is able to predict the sequence of
the next proposer. Assuming signatories run a replica and participate in the network (their IP
address is known) an Attacker could simply DoS the next scheduler and prevent him from
successfully broadcasting his propose. After the timeout, the attacker would DoS the next
scheduled proposer. All in all, if successful, an attacker may be able to stop the network (or at least
degrade the network) with a relatively low overhead - he just needs to DoS one node at a time.
While this is a common issue in leader-based consensus protocols, we still want to point it out, as
most blockchain consensus protocols are not leader-based and hence to do not suffer from this.
Essentially, when using this protocol nodes should implement some stability mechanisms.

Risk Accepted: The hyperdrive team states: We will consider ways in which this can be fixed in
future versions. It is not immediately obvious how this can be resolved in any PBFT-based algorithm
without reasonable amounts of additional complexity. Until then, we are reliant on three
mechanisms to mitigate this issue: rate-limiting implemented by the user of Hyperdrive, cloud
provider protections against network-level attacks, and increasing timeouts as rounds progress
(requiring the attacker to maintain attacks for longer and longer)

10
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

11
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their
categories are explained in the Findings section.
Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 6

• Code CorrectedCross-Shard Fast Forward
• Code CorrectedFindings related to Inbox structure
• Code CorrectedIncomplete signature of propose messages
• Code CorrectedScheduler has incorrect signatories during Rebase
• Code CorrectedWrong base block signatories used for fast-forwarding
• Code Correctedf not updated when signatories change

Medium -Severity Findings 9

• Code CorrectedConsensus stuck due to dropped Proposal
• Code CorrectedFast forwarding across rebase needs to update signatories
• Code CorrectedFast-forwarding does not notify the observer
• Code CorrectedIncorrect precommits interfere with fast-forward functionality
• Code CorrectedMalformed input data causes panic
• Specification ChangedNo catch up after missing base block
• Code CorrectedPrecommits may be blocked if proposal arrives last
• Code CorrectedShard not included in signature
• Code CorrectedSingle-time trigger can be triggered twice

Low -Severity Findings 9

• Code CorrectedChecking the BaseHash as part of block validity
• Code CorrectedConsistent handling for commits
• Code CorrectedDifferent Blocks can have same timestamps
• Code CorrectedInconsistent handling in Message Queue
• Specification ChangedNo round check performed
• Code CorrectedOne Signatory only
• Code CorrectedPossible Blockhash Collision
• Code CorrectedSignatory can DoS using fast-forward
• Code CorrectedTODO in Code

12
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Security High

Code Corrected
6.1 Cross-Shard Fast Forward

In case signatories from one shard, become signatories of another shard (either simultaneously or
later), an attacker can reuse their signatures to perform an incorrect fast-forward. The attack is
explained in an example below:
Setting:

• Shard 1 has significantly higher block numbers, e.g. current block number is 1,000
• Shard 2 has a current block number of 100
• The current signatories of shard 2 were signatories of shard 1 during blocks 1 - 500

Attack:
• A malicious signatory of shard 2 creates the following proposal: - For a height when it would be

scheduled - So that there would not be a rebase block in between - Example: proposal for
block at height 151 - Include a latestCommit for block 150 of shard 1 - The proposed block
correctly builds on the one referenced in latestCommit - It is signed for shard 2

• This proposal is received by the other signatories: - They check that the message has the right
shard 2, which is correct - They check that the signatory is correct, which is true - They handle
the propose message - Check that the attacker is scheduled to propose a block and insert it -
They execute syncLatestCommit - The block is from the future and comes with the
necessary signatures - The 2f+1 precommits are all for this block - All signatories are valid
signatories - syncLatestCommit fast-forwards to 150

Summary:
• The attack doesn't necessarily require that signatories are active in parallel, they could also

switch shards over time
• The overlap of signatories needs to be at least 2f+1
• These signatories do not have to be malicious, their signatures are simply reused by a single

malicious signatory

Code Corrected:
The shard information is now part of each message, including precommits. When checking
precommits before fast-forwarding each precommit is checked whether it belongs to the right shard.
Hence, the finding is resolved.

Security

Design High Code Corrected
6.2 Findings related to Inbox structure

Hyperdrive currently processes and inserts all received messages into an inbox, given they are
signed by a current signatory included in the current base block. This is done regardless of the
block height of the message.

13
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

This method not only inserts the message but also returns information about how many messages
of this height and round have already been seen.
func (inbox *Inbox) Insert(message Message) (n int, firstTime, firstTimeExceedingF, firstTimeExceeding2F, firstTimeExceeding2FOnBlockHash bool)

A comment states:
"This method is used extensively for tracking the different conditions under which the state
machine is allowed to transition between various states. Its correctness is fundamental to the
correctness of the overall implementation."

The current implementation has several issues, summarized these are:
1. Outdated messages are inserted & processed - which is unnecessary
2. Silent overwriting of messages
3. Inserting messages for the future

Each of these three issues is described in detail below. Another separate issue addresses how the
firstTimeExceeding2FOnBlockhash marker can return true multiple times for the same
height & round.

1. Currently, all received messages are processed by the handleXXX() functions even when
the node knows that these are outdated. This is a waste of cpu-time and may open up an
attack surface for denial-of-service attacks. Note that each time a new block is confirmed
(meaning that enough precommits have been received) all messages of previous heights are
discarded. Nevertheless, if a new outdated message arrives again, it is inserted & processed
again only to be dropped at the next confirmed block.
Once consensus has been reached on a specific block height, messages concerning this block
height or below are irrelevant and should not be processed anymore. The code features no
such checks.
A malicious broadcaster in the network may attempt to spam nodes by replaying outdated
messages. Ideally, outdated messages are dropped as early as possible, e.g. even before
verifying the signature.

2. Under ideal conditions, every signatory sends one (correct) message for each height, round
and type which is received by everyone. Under real circumstances however, this is not the
case. Signatories may act malicious, either intentionally or when their private key has been
compromised. BFT guarantees the proper functionality of the network up to f
malicious/unavailable nodes.
Upon receiving a message, the following happens:

A. The previous length of the inbox is read
Using _, ok := inbox.messages[height][round][signatory] it is checked if
an entry already exists. The value is discarded, ok is a boolean indicating if the entry in
the map is already existing or not. The existence of an entry implies a previous message
of this type from this signatory at this height and to this receiver.

B. No matter the result, the entry is updated:

inbox.messages[height][round][signatory] = message

The message is stored in the map

14
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

inbox.messages[height][round][signatory]

C. In case a message was already present, it is overwritten. There is no check if it is
overwritten by the very same or a different message of this signatory. Overwriting it with
the very same message is unnecessary and detecting two different messages of the same
signatory at the very same height and round should be followed up appropriately.

D. Next the new length of the map is read and the following behavior occurs:

if !ok {
 nOnBlockHash = inbox.QueryByHeightRoundBlockHash(height, round, message.BlockHash())
}

This means, only if there was no entry in
inbox.messages[height][round][signatory], a check is performed how many
messages for the same blockhash have been sent by replicas already.
So in case this was a repeated message, this is not triggered. However with the next
message of another signer, the newly overwritten message is included in the counting.

Executing Insert again for an identical message which has already been processed before
should not change the system state and all the firstTimeX values should be false. (There is
a separate issue which shows this is not necessarily the case for
firstTimeExceeding2FOnBlockHash.) This is just additional computation overhead which
could be avoided. Note that such messages may be replayed / spammed by anyone, thus the
computational overhead upon handling a second, identical message must be minimal.
As a consequence of this overwriting of messages, the description of function
QueryMessagesByHeightRound which states

"returns all unique messages that have been received"
is not totally true. It just returns all currently stored messages of all signatories at this height
and round. More messages may have been received by a signatory, but have been overwritten
in the meantime.

3. Inserting messages for future heights and rounds is problematic, as there may be rebase
and base blocks in between the current height and the future height. The rebase procedure
might change the set of signatories.
The Verify() function of message.go only checks if the signatory of the message is
currently a member of the signatories listed in the latest base block, not if the signatory is a
actual member of the actual signatories at the block height of the message. Nevertheless
handlePropose(), handlePrevote() and handlePrecommit() just enter these
message into the Inbox. Thus these messages influence the calculations later on (e.g. when
the total length of the inbox is considered).
Currently, the signatory is checked at the time the message arrives against the set of currently
active signatories irregardless of the height of the message. This allows a current signatory to
insert a message for future heights where he may not be a valid signatory anymore.
While it's considered impossible to predict a valid blockhash for a future block, crafting
messages using InvalidHash interfering with precommit/prevote nil counting is certainly
doable. Furthermore, in case of colluding signatories, they may be able to insert enough
messages e.g. precommitting for a non-existing blockhash, which may become very
problematic:

15
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Consider the following scenario. A malicious signatory S acts normally, but signs
precommit messages for a blockhash BH at a future height H. Over time, some change
of signatories, so-called rebasing happen. Each time S changes it's private key and hence
can submit multiple such precommit messages for BH at height H. Once H is reached, it
just needs to send a single message for BH and there might be 2f+1 signatures. Hence, a
single signatory can determine a block on its own.

While these future messages could be legitimate messages, the node cannot know this at this
point. Such messages may be queued and only processed once the node is at this specific
height.

Code corrected: The mentioned issues have been addressed by changes in the code.
1. Outdated messages are inserted & processed: Outdated messages are no longer processed.
HandleMessage() of replica.go now drops outdated messages immediately.
2. Silent overwriting of messages: The Insert Method of Inbox no longer allows overwritting of
messages. In case of a second messages at the very same height and round by the same
Signatory, previousN, false, false, false, false will now be returned.
3. Inserting messages for the future: Before processing messages from the queue a check now
ensures that no base block has been missed.

Security High Code Corrected
6.3 Incomplete signature of propose messages

To ensure the integrity of a message, the hash of the message is signed. However the hash of the
propose message does not include all fields. Missing fields can be manipulated despite the
message having been signed. The definition in message.go shows that the sha256.Sum256() is
calculated over the String() function of the message type (Propose, Prevote, or Precommit).
The propose messages are defined as follows:

type Propose struct {
 signatory id.Signatory
 sig id.Signature
 height block.Height
 round block.Round
 block block.Block
 validRound block.Round

 latestCommit LatestCommit
}

However, the hash is only done over the message which is constructed like this:

fmt.Sprintf("Propose(Height=%v,Round=%v,BlockHash=%v,ValidRound=%v)",
 propose.Height(), propose.Round(), propose.BlockHash(), propose.ValidRound())

16
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

The struct entry LatestCommit is missing. An attacker may intercept a Propose message and
change the content of LatestCommit. Combined with the Denial-of-Service issues exploiting
syncLatestCommit, anyone may be able to launch Denial-of-Service attacks against nodes. Note
that all fields except signatory and sig (which are part of the verification process) need to be
included in the hash.

Code corrected: To fix issue Shard not included in signature the updated code introduces an
additional signature for messages. The broadcaster now signs the hash of the marshalled
representation of the message struct.

type Message struct {
 Message process.Message
 Shard Shard
 Signature id.Signature
}

This includes the whole marshalled representation of the included process.Message which
resolves the issue mentioned above. However, each message now features two signatures.

Correctness High Code Corrected
6.4 Scheduler has incorrect signatories during
Rebase
When a rebase starts, the Rebase function is called for the Replica. This function also triggers the
scheduler to rebase. The scheduler immediately performs the following operation:

func (rr *roundRobin) Rebase(signatories id.Signatories) {
 rr.signatoriesMu.Lock()
 defer rr.signatoriesMu.Unlock()

 // Copy signatories into the scheduler to avoid manipulation of the slice,
 // external to the scheduler, from affecting the scheduler.
 rr.signatories = make(id.Signatories, len(signatories))
 copy(rr.signatories, signatories)

This immediately replaces the signatories. Hence, any subsequent calls to the scheduler will
return one of the new signatories. This can lead to deadlock situations as the new signatories
cannot propose the rebase block, but their proposal might be expected according to the
scheduler.

Code Corrected:
In the updated code, the shardRebaser triggers the scheduler's update only once it has received
the notification that the Base has been committed. Hence, the set of signatories is updated at the
right time.

17
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Security Design High Code Corrected
6.5 Wrong base block signatories used for
fast-forwarding
The function syncLatestCommit() inside process.go processes the LatestCommit struct
included in a proposal in order to allow fast forwarding. To ensure that the included precommits are
signed by valid signatories, the code compares the used signatories to the signatories in the base
block. Instead of loading the latest base block however, block 0 (the genesis base block), is always
loaded and its signatories are extracted.

baseBlock, ok := p.blockchain.BlockAtHeight(0)

The signatories may have been updated during a rebase. The function syncLatestCommit
however uses the original set of signatories defined in block 0, instead of the signatories defined in
the latest base block. Hence the original signatories, which may have been replaced can still sign
precommits included in the latestCommit struct and thereby may make out-of-sync nodes
fast-forward to a potentially malicious block.

Code corrected: The code was changed to:

baseBlock := p.blockchain.LatestBaseBlock()

For related issues regarding the awareness of the latest base block further code changes were
implemented in https://github.com/renproject/hyperdrive/pull/78.

Design High Code Corrected
6.6 f not updated when signatories change

Creating a new replica starts a new process. A process is initialized with a state which includes
Inboxes for the messages. Upon creating an Inbox the parameter f of the inbox must be set.
Starting a new instance of a replica creates a new process and for the state argument the following
is passed:
process.DefaultState((len(latestBase.Header().Signatories())-1)/3). f is set
to len(latestBase.Header().Signatories())-1)/3 for each inbox.
During rebasing the signatories can change. Currently this is implemented as follow:

func (replica *Replica) Rebase(sigs id.Signatories) {
 if len(sigs)%3 != 1 || len(sigs) < 4 {
 panic(fmt.Errorf("invariant violation: number of nodes needs to be 3f +1, got %v", len(sigs)))
 }
 replica.scheduler.Rebase(sigs)
 replica.rebaser.rebase(sigs)
}

While it is ensured that the new length of the signatories fulfills the 3f+1 condition, the f of the
Inbox is not updated. Thus, if the length of the signatories changes, the firstTimeXXX of the
Inbox are calculated incorrectly using the unchanged, old value for f. The conditions under which

18
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://github.com/renproject/hyperdrive/pull/78
https://www.pwc.ch

the state machine is allowed to transition between various states won't be correctly triggered
anymore.

Code corrected:
The shardRebaser now ensures that the length of the new signatories is equal to the length of the
previous signatories, this mitigates the problem described above.

Security Medium Code Corrected
6.7 Consensus stuck due to dropped Proposal

The following messages are exchanged:

1. Proposal, Height n, Type: Base

• This message will get a delayed delivery to f correct nodes
• The other 2f+1 nodes receive it immediately

2. Prevote, Height n

• Succeeds with 2f+1 nodes

3. Precommit, Height n

• Succeeds with 2f+1 nodes

4. Proposal, Height n+1, Type: Standard

• Thrown away by the f nodes that haven't received message 1, because they are
missing a base block

• Other 2f+1 nodes send prevotes

5. Prevote, Height n+1

• Succeeds with 2f+1 nodes

6. Precommit, Height n+1

• Succeeds with 2f+1 nodes
• Right after sending the f faulty nodes fail

7. Proposal, Height n+2, Type: Standard

• Thrown away by the f nodes that haven't received message 1, because they are
missing a base block

8. Now Message 1 reaches the f correct nodes

• They advance to height n+1 and wait for a Proposal
• After the timeout, they send Prevote nil, but never receive 2f+1 prevotes

19
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

9. Prevote, Height n+2

• Sent by the f+1 nodes that are up-to-date and received message 7
• They never receive 2f+1 prevotes

The f nodes are stuck at height n+1 and f+1 nodes are stuck at height n+2. Hence, they never
advance.
This example also works if only one node instead of f nodes gets a delayed delivery of message 1.

Code corrected: After a new base block has been committed a Resync message is sent out to
ensure a synchronization of lost messages.

Design Medium Code Corrected
6.8 Fast forwarding across rebase needs to
update signatories
If fast forwarding happens over a across a set of rebase and base blocks the code using the
Hyperdrive package must ensure that the signatories are updated accordingly. Considering only the
currently implemented Hyperdrive code, this is not handled. Hence, the node performing the fast
forwarding would attempt to proceed with the outdated signatories of the last base block it is aware
of.

Code corrected:
Fast forwarding happens only with Propose messages, upon receiving a Propose message for a
future height the updated code now checks for missed base blocks and only handles this Propose
message if no base block has been missed.

// If the Propose is at a future height, then we need to make sure
// that no base blocks have been missed. Otherwise, reject the
// Propose, and wait until the appropriate one has been seen.
baseBlockHash := replica.blockStorage.LatestBaseBlock(m.Shard).Hash()
blockHash := m.Message.BlockHash()
numMissingBaseBlocks := replica.rebaser.blockIterator.BaseBlocksInRange(baseBlockHash, blockHash)
if numMissingBaseBlocks == 0 {
 // If we have missed a base block, we drop the Propose. The
 // Propose that justifies the next base block will eventually be
 // seen by this Replica and we can begin accepting Proposes from
 // the new base.

 // In this condition, we haven't missed any base blocks, so we
 // can proceed as usual.
 replica.p.HandleMessage(m.Message)
}

It is essential that BaseBlocksInRange() works as intended.
Dropping the Propose message in case a base block has been missed might be problematic, as
such a message might still be legitimate. Messages might only arrive once and in this case, the
message would never be processed.

20
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Correctness Medium Code Corrected
6.9 Fast-forwarding does not notify the
observer
After seeing 2f+1 precommits for a block, this block is inserted using InsertBlockAtHeight()
and - if available - the observer is notified using DidCommitBlock().
The observer is the Rebaser, DidCommitBlock does the following depending on the type of the
block:

case block.Standard:
case block.Rebase:
 rebaser.expectedKind = block.Base
 rebaser.expectedRebaseSigs = committedBlock.Header().Signatories()
case block.Base:
 if rebaser.scheduler != nil {
 rebaser.scheduler.Rebase(rebaser.expectedRebaseSigs)
 }
 rebaser.expectedKind = block.Standard
 rebaser.expectedRebaseSigs = nil
}

In case of a rebase or base block the expectedKind for the next block and the
expectedRebaseSigs are set. This is important as otherwise the next block will be rejected.
In case of fast-forwarding, syncLatestCommit() only inserts the block but the observer is not
notified and consequently these values are not updated. Thus, in case of fast-forwarding to a
rebase block, the base block of the propose message will be rejected.

Code corrected:
The new code version of syncLatestCommit() notifies the observer in case the fast-forwarding
succeeds:

if p.observer != nil {
 p.observer.DidCommitBlock(latestCommit.Block.Header().Height())
}

21
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Design Medium

Code Corrected

6.10 Incorrect precommits interfere with
fast-forward functionality

The scheduled proposer creates a proposal for the new block. A proposal includes a struct entry
called latestCommit, which enables nodes that have fallen out of sync to receive the latest block
and sufficiently many precommits endorsing this block.
While crafting a new propose, this struct entry latestCommit is constructed and the precommits
are added. The implementation of this, together with other issues is problematic:

messages := p.state.Precommits.QueryMessagesByHeightWithHighestRound(p.state.CurrentHeight - 1)
commits := make([]Precommit, 0, len(messages))
for _, message := range messages {
 commit := message.(*Precommit)
 if commit.blockHash.Equal(previousBlock.Hash()) {
 commits = append(commits, *commit)
 }
}
propose.latestCommit = LatestCommit{
 Block: previousBlock,
 Precommits: commits,
}

The precommits are fetched using QueryMessagesByHeightWithHighestRound(). This
function is defined in messages.go and fetches the precommits with the highest round for this
block height present in the Inbox.
Due to the issue that all received messages (which are signed by a valid signatory) are stored in the
Inbox, an adversarial signatory can craft and broadcast precommit messages for specific heights
and specific rounds. These messages will be inserted into the precommit inbox.
This allows an adversarial signatory to insert precommit messages at a very high round.
Consequently the function QueryMessagesByHeightWithHighestRound() used in the code
above will return his precommit message only.
Due to the check if commit.blockHash.Equal(previousBlock.Hash()) which will most
certainly be false (assuming the adversarial signatory can not guess a future blockhash or insert the
message on very short notice once the blockhash is known) the resulting LatestCommit struct will
contain no precommit.
The consequence will be that nodes which are out of sync and see this proposal cannot
fast-forward as expected. Hence, a single adversarial signatory can block fast-forwarding for all
other nodes.
Side notes: First, the code implicitly expects that there are enough valid precommits. To decrease
network overhead, only 2f+1 precommits could be included to endorse the block. Secondly, there
is no check built in if the crafted struct latestCommit is actually valid before the message is
broadcasted.

Code corrected: QueryMessagesByHeightWithHighestRound() has been changed and now
only considers rounds for which the inbox contains 2f messages. An adversarial signatory can no
longer interfere with this function by inserting a precommit message at a very high round.
Additionally the resulting LatestCommit will now only contain 2f+1 precommits.

22
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Security

Design Medium Code Corrected
6.11 Malformed input data causes panic

Input validation is generally missing when unmarshalling different datatypes (e.g. blocks, block
headers or messages etc.). Simple fuzzing reveals various inputs which cause the unmarshalling to
crash.
As this is a fairly general finding, we do not mention each occurrence separately. Instead, we
provide examples code that is supsectible to crash:
block/marshal.go line 245:

if err := binary.Read(buf, binary.LittleEndian, &numBytes); err != nil {
 return fmt.Errorf("cannot read block.header len: %v", err)
}
headerBytes := make([]byte, numBytes)

make() crashes if numBytes is to large with and out of memory error, due to an overly large
memory allocation. A similar issue exists for process/marshal.go on line 205. Other crashes
occur due to panic: runtime error: makeslice: len out of range.

Code corrected: Marshalling and unmarshalling of data is now handled using the surge library.
This library never explicitly panics and protects against malicious inputs.

Design Medium Specification Changed
6.12 No catch up after missing base block

In case a node was offline for some time it can use fast-forwarding to catch up to the current state.
However, this does not work in case a base block occurred in between as it cannot verify the new
signatories. The Resync message can be used to replay previous messages, but if the base block
has been succeeded by two more blocks, it will no longer be included in those messages.
Hence, a node that misses as few as three blocks, which happen to include a base block, cannot
really catch up any longer.

Specification changed:
The specification was clarified. In particular, it was clarified that message delivery has to be
guaranteed for propose and precommits that are related to base blocks.

23
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Design Medium Code Corrected
6.13 Precommits may be blocked if proposal
arrives last
In summary, there are three findings around this issue:

1. The text describing the function is incorrect
2. Emitting precommits may be blocked for the case when the proposal arrives last
3. First in height x round y markers may trigger actions on other block heights and rounds

In the following, we describe each of these findings in detail.
1. The checkProposeInCurrentHeightAndRoundWithPrevotesForTheFirstTime

function is responsible to send the precommit endorsing a proposal, if the conditions to do so
have been reached. It is annotated with:

// checkProposeInCurrentHeightAndRoundWithPrevotesForTheFirstTime must only be
// called when a Propose and 2f+1 Prevotes has been seen for the first time at
// the current `block.Height` and `block.Round`. This can happen when a Propose
// is seen for the first time at the current `block.Height` and `block.Round`,
// or, when a Prevote is seen for the first time at the current `block.Height`
// and `block.Round`.

This states, this function must only be called when a Propose and 2f+1 prevotes has been
seen for the first time at the current block.Height and blockRound. The current
implementation does not respect this, the function itself however enforces these conditions.
The description is incorrect and should be amended to reflect the actual implementation.

Under normal conditions, the proposal arrives before the prevotes and the handling of the prevotes
should trigger the precommit message once sufficient prevotes for a blockhash have been received.
However, as messages generally may arrive out-of-order, more than 2f prevotes may arrive before
the actual proposal. In this case the precommit message must be emitted after processing the
proposal.
checkProposeInCurrentHeightAndRoundWithPrevotesForTheFirstTime gets called
twice in the codebase:

• handlePrevote() calls this function whenever it has received more than 2f prevotes on a
blockhash at a certain height and round

• handlePropose() calls this function whenever it received a proposal for the firstTime at
any height & round

Note that the checkProposeInCurrentHeightAndRoundWithPrevotesForTheFirstTime
does not take any argument. Regardless of the height and round of the processed message, this
function always operates on the current height and round of the node.
The function does the following:

• The proposal of the scheduled proposer is loaded. The function returns if the proposal is not
available. This is in case more than 2f prevotes arrived, but no proposal arrived.

• The amount of prevotes for this proposal's blockhash is fetched and checked.

24
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

• Only if there are more than 2f prevotes for this blockhash and the state is in StepPrevote a
precommit for this hash is emitted.

Hence there are two findings:
2. In case another proposal and 2f+1 prevotes arrived before the correct proposal, the correct

proposal is not processed. Hence, no precommit is emitted, even though the valid conditions
are fulfilled.

3. Messages with the wrong height or round can trigger
checkProposeInCurrentHeightAndRoundWithPrevotesForTheFirstTime to be
executed for the current round. The arrival of such messages of influences the execution of
checkProposeInCurrentHeightAndRoundWithPrevotesForTheFirstTime.

Code corrected:
All three findings have been addressed by changing the code:

• The comments have been enhanced.
• The function handlePropose() has been enhanced, the updated implementation only

inserts the proposal of the scheduled proposer into the Inbox. This ensures that the first
marker triggers correctly which resolves the issue described above where precommits might
be blocked.

• First markers triggered by messages of other heights than the nodes current.height no
longer trigger actions on the nodes current.height as all calls to
checkProposeInCurrentHeightAndRoundWithPrevotes(),
checkProposeInCurrentHeightAndRoundWithPrevotesForTheFirstTime() and
checkProposeInCurrentHeightWithPrecommits() have been wrapped into if
branches which are only executed if the message being processed is at the same height.

Note that the new HandleMessage() implementation of replica.go which now features a
message queue and drops outdated messages already ensures that messages are only processed
in order and when the message height is equal to the current.height, therefore these checks
are redundant. There is only one exception: The message queue stores and executes all received
messages of future heights. In case >2f+1 messages for a future height arrive before the node
moves to this height, these messages have already been pushed to the queue and will be
executed. After 2f+1 precommit messages the node will move on to the next height/round but will
still execute the remaining queued messages at the previous height and round, which are not
dropped in this case. This however would be no problem as these messages will not trigger any
action.

Security

Medium Code Corrected
6.14 Shard not included in signature

Messages inside replica.go are defined as:

type Message struct {
 Message process.Message

25
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

 Shard Shard
}

The signature is stored inside Message and only calculated over the hash of the inner Message.
The shard identifier is not included in the signature.
This can also be seen in the implementation of broadcast.go where these messages are sent:

func (broadcaster *signer) Broadcast(m process.Message) {
 if err := process.Sign(m, broadcaster.privKey); err != nil {
 panic(fmt.Errorf("invariant violation: error broadcasting message: %v", err))
 }
 broadcaster.broadcaster.Broadcast(Message{
 Message: m,
 Shard: broadcaster.shard,
 })
}

Only the message is signed, not the shard identifier. Hence, any network-based attacker could
simply change the shard information.

Code corrected: Additionally to the already signed inner Message, a field Signature has been
added to the Message struct.

type Message struct {
 Message process.Message
 Shard Shard
 Signature id.Signature
}

To calculate the signature, the message is marshalled into it's binary representation. All fields of the
message are covered, this resolves the issue mentioned above.

Security Medium Code Corrected
6.15 Single-time trigger can be triggered twice

The Insert method is used for tracking the different conditions under which the state machine is
allowed to transition between various states. It's correctness is fundamental to the correctness of
the overall implementation. Among other return values, Insert returns the value
firstTimeExceeding2FOnBlockHash, which signals that the critical threshold of 2f has been
passed.
firstTimeExceeding2FOnBlockHash should only be true the first time that more than 2f
unique messages have been seen for the same blockhash (at a given height & round).
However, true might be returned for firstTimeExceeding2FOnBlockHash multiple times for
the same height & round. Consider the following scenario:

1. 2f+1 messages for the same blockhash 0xA arrive. Hence, when inserting the last message,
firstTimeExceeding2F0nBlockHash will be true.

26
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

2. Later one of these 2f+1 signatories might change his blockhash. He does this by sending a
new message for this height and round with another blockhash 0xB.

3. So that firstTimeExceeding2F0nBlockHash return true for a second time at this height
and round, one of the remaining signatories sends a message for this blockhash 0xA.
This last step occurs for the following reasons. The code checks for an existing message:

_, ok := inbox.messages[height][round][signatory]

where ok will be false because there was no entry yet for that signatory, hence the following
branch is executed:

if !ok {
 nOnBlockHash = inbox.QueryByHeightRoundBlockHash(height, round, message.BlockHash())
}

This counts the number of messages for the blockhash again, which will again be 2f+1.
Finally, firstTimeExceeding2FOnBlockHash is returned as

firstTimeExceeding2FOnBlockHash = !ok && (nOnBlockHash == 2*inbox.F()+1)

which evaluates to true.

Code corrected: Signatories can no longer overwrite previously sent messages:

conflicting, ok := inbox.messages[height][round][signatory]
if ok {
 // We do not override existing messages. This means that it is
 // impossible for N to change, and thus for any "first time" triggers to
 // become true.
 if conflicting.SigHash().Equal(message.SigHash()) {
 // Messages are exact duplicates of each other.
 return previousN, false, false, false, false, nil
 }
 // Messages are in conflict.
 return previousN, false, false, false, false, conflicting
}

inbox.messages[height][round][signatory] = message

Only if no message is present in inbox.messages[height][round][signatory] the new
message is stored in the inbox. This prevents the issue described above.

27
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Design Low Code Corrected
6.16 Checking the BaseHash as part of block
validity
During the execution of the isBlockValid function inside rebase.go the BaseHash of the
to-be-checked block is compared to the latest locally stored base block. However, currently this
check only occurs if checkHistory is true.
Under the assumption that base blocks are not missed, it can always be checked.

Code corrected:
The code was corrected accordingly. The check is always performed in the new version.

Design

Low Code Corrected
6.17 Consistent handling for commits

When a new base block is committed through the regular procedure, a Resync message is sent
out. However, if a base block is committed through the syncLatestCommit function no Resync
messages is broadcasted.

Code corrected: The new code is consistent in handling the commits of base blocks.

Security Low Code Corrected
6.18 Different Blocks can have same
timestamps
The validity check for block timestamps, rejects a new block if it fulfills the following condition:

if proposedBlock.Header().Timestamp() < parentBlock.Header().Timestamp() {

Hence, equality of timestamps is allowed for different blocks. These might lead to complications on
higher-level protocols, as most blockchain protocols, e.g. Ethereum, do not allow identical
timestamps for different blocks.

Code corrected: The validity check is now has the following rejection criteria:

if proposedBlock.Header().Timestamp() <= parentBlock.Header().Timestamp() {

Hence, the issue is resolved.

28
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Correctness Low Code Corrected
6.19 Inconsistent handling in Message Queue

The message queue stores messages that have arrived but cannot be processed yet. During
PopUntil the ProposeMessageType is cleared, but the ResyncMessageType is not cleared.
Both types should never be part of the queue.

Code corrected: The ResyncMessageType is now also cleared.

Security Low

Specification Changed
6.20 No round check performed

When a new proposal is received, a number of tests are performed. These include checks whether
the round of the proposal matches the expected round. However, a proposal contains two round
entries. One directly inside the proposal. This one is checked as mentioned above. Another round
entry is inside the Block that is included in the proposal.
This second entry is neither checked when parsing the proposal, nor during the validation of
IsBlockValid. Hence, honest nodes could accept wrong round values.

Specification Changed:
Ren clarified that the round of the Block has a different meaning. The code contains the updated
comment:

height Height // Height at which the block was proposed (and committed)
round Round // Round at which the block was proposed

Design Low Code Corrected6.21 One Signatory only
replica.go implements the New() method on the Replica struct. To ensure that there are
always 3f+1 signatories, there is following check:
if len(latestBase.Header().Signatories())%3 != 1 {
 panic(fmt.Errorf("invariant violation: number of nodes needs to be 3f +1, got %v", len(latestBase.Header().Signatories())))
}

Later f is initialized as:

process.DefaultState((len(latestBase.Header().Signatories())-1)/3),

The check does not prevent one signatory which would result in an f of zero.

29
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Code corrected:
The updated code now enforces a minimum of four signatories in both places where the signatories
are set:

• During the creation of a new replica
• When updating the signatories during a rebase

Security Low

Code Corrected
6.22 Possible Blockhash Collision

The blockhash is computed as follows:
func ComputeHash(header Header, txs Txs, plan Plan, prevState State) id.Hash {
 return sha256.Sum256([]byte(fmt.Sprintf("BlockHash(Header=%v,Txs=%v,Plan=%v,PreviousState=%v)", header, txs, plan, prevState)))
}

As Hyperdrive is generally agnostic to the structure of the underlying transactions, plans and states,
their structure is not known. In particular, on the Hyperdrive-level, plan and prevState are
essentially a byte array. Hence, the following collision could theoretically happen.
First Example Block:

plan = ",PreviousState="
prevstate = ""

Second Example Block:

plan = ""
prevstate = ",PreviousState="

Both blocks would have the same blockhash, as they would have the same string representation,
even though they have different contents.

Code Corrected:
The block hash is now computed differently: The components of the block are now marshalled
using the surge library into a bytes buffer, the hash is then calculated over this buffer.
The surge library contains the following documentation:

// When marshaling arrays/slices/maps, an uint32 length prefix is marshaled and
// prefixed.

Hence, the issue is avoided as length prefixes are added.

30
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

Security Low Code Corrected
6.23 Signatory can DoS using fast-forward

Any signatory can craft a malicious propose message to put a lot of computational load on other
nodes.
By crafting a proposal for a block far in the future and including a large list of precommits, all signed
by itself, a signatory can trigger a large number of cryptographic signature verifications, which are
computationally expensive.
During the execution of the syncLatestCommit() function, the Hyperdrive loops over all
precommits and verifies their signature before checking the uniqueness of the signatories after the
loop. Only then is it detected that the propose message does not have sufficiently many unique
signatories and the execution of syncLatestCommit() is stopped.

Code corrected: This is no longer possible, the syncLatestCommit() function has been
changed to only accept LatestCommit structs containing exactly 2f+1 precommits.

Design Low Code Corrected6.24 TODO in Code
There is a remaining TODO in rebase.go on line 139:

// TODO: Transactions are expected to be nil (the plan is not expected
// to be nil, because there are "default" computations that might need
// to be done every block).

Code corrected: The comment has been removed as this is not necessarily true and does not
affect rebasing.

Suggestion

Code Corrected
6.25 Unfair Round-Robin Scheduler

The current RoundRobinScheduler which determines the next proposer has some drawbacks.
Whenever a proposer fails to propose on his turn, the next signatory is tasked to proceed with a
proposal. The signatories are selected with the following scheme:

scheduler.signatories[(uint64(height)+uint64(round))%uint64(len(scheduler.signatories))]

This has two consequences:

31
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

1. If a single signatory goes offline, it's always the same signatory "replacing" them. This basically
doubles the proposal power of the replacing signatory, which is neither justified nor fair, as the
documentation states that voting power should be equally distributed.

2. If a single signatory x misses its turn, then signatory x+1 can propose two subsequent blocks.
The one where it replaces the original signatory and the next one, which is its scheduled block
to propose.

Code corrected: The unfairness of the round-robin is only really relevant when either block
rewards are given to the proposer or there is no punishment for failing to propose repeatedly. To
support general use cases the scheduler can now be replaced.

32
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://www.pwc.ch

1 https://arxiv.org/pdf/1807.04938.pdf
2(1, 2) https://arxiv.org/pdf/2004.10617.pdf

33
Ren - Code Assessment - Hyperdrive - Private and confidential
PwC Switzerland - www.pwc.ch

https://arxiv.org/pdf/1807.04938.pdf
https://arxiv.org/pdf/2004.10617.pdf
https://www.pwc.ch

	1 Executive Summary
	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.3 Terminology
	2.3.1 Blocks
	2.3.2 Messages
	2.3.3 Roles
	2.3.4 Overview of the consensus process
	2.3.5 Trust Model

	3 Limitations and use of report
	3.1 Inherent limitations
	3.2 Restriction of use and purpose of the report

	4 Terminology
	5 Findings
	5.1 Consensus is not resilient due to single point of failure

	6 Resolved Findings
	6.1 Cross-Shard Fast Forward
	6.2 Findings related to Inbox structure
	6.3 Incomplete signature of propose messages
	6.4 Scheduler has incorrect signatories during Rebase
	6.5 Wrong base block signatories used for fast-forwarding
	6.6 f not updated when signatories change
	6.7 Consensus stuck due to dropped Proposal
	6.8 Fast forwarding across rebase needs to update signatories
	6.9 Fast-forwarding does not notify the observer
	6.10 Incorrect precommits interfere with fast-forward functionality
	6.11 Malformed input data causes panic
	6.12 No catch up after missing base block
	6.13 Precommits may be blocked if proposal arrives last
	6.14 Shard not included in signature
	6.15 Single-time trigger can be triggered twice
	6.16 Checking the BaseHash as part of block validity
	6.17 Consistent handling for commits
	6.18 Different Blocks can have same timestamps
	6.19 Inconsistent handling in Message Queue
	6.20 No round check performed
	6.21 One Signatory only
	6.22 Possible Blockhash Collision
	6.23 Signatory can DoS using fast-forward
	6.24 TODO in Code
	6.25 Unfair Round-Robin Scheduler

		 			 	
	2020-05-26T22:06:55+0200

