PUBLIC

Security Audit

of REN Smart Contracts

November 25, 2019

Produced for

b

Ren

by

% CHAINSECURITY

Table Of Contents

Foreword 1
Executive Summary 1
Audit OVerVIEW e e 2
1 Methodology o 2
2. SCOPE . . e 2
3. Depth . . . 3
4. Terminology o 3
5. Limitations L 4
System OVEIVIEW 5
1 Ren . 5
2. RenVM . . 5
3. Contracts 5
4. Darknode Registry 6
5. Darknode Payment 6
6. Shifter 6
7. SystemRoles 7
8. TrustModel 8
Best Practices in REN's project e 9
1. Hard Requirements e 9
2. BestPractices 9
3. SmartContract Test Suite 9
Security ISSUES L L 10
1. Anyone allowed to blacklist tokens for claiming o 10
2. recoverTokens does notuse SafefRc20 | PR - - - ool 10

https://chainsecurity.com

https://chainsecurity.com

3. Deregistering token is immediate 0 v Addressec | 10

4. Floating pragma if 11
Trustlssues 12
1. mintAuthority can be set to address zero 0 12
Design Issues 13
1. Not using modifier for role based access | PR - - - - - - oo 13
2. Divisionby 2 leaves 1weiifodd ~ [AREED - - - oo 13
3. slash function does not check for existence 0 13
4. Code duplication in Shi fter :‘ 13

5. safeTransferFromWithFees is non-ERC20 compliantm v Acknowledged [N 14

6. Using string as mapping key :: v Acknowledgec | 14
7. Unnecessary local variable : 14
8. Darknode registration address zero allowed 0 14
9. Removing last array item * 15
10. Depositing unregistered tokens possible w 15
Recommendations / Suggestions e 16
Addendum and General Considerations e 17
1. Dependence on block time information 17
2. Forcing ETH intoasmartcontract 17
3. Rounding Errors 17
Disclaimer 18

ChainSecurity Audit Report

Foreword

We would like to thank REN for choosing CHAINSECURITY to audit their smart contracts. This document
outlines our methodology, limitations and results.

— ChainSecurity

Executive Summary

REN engaged CHAINSECURITY to perform a security audit of REN, an Ethereum-based smart contract system.
The smart contracts of REN are used for certain features of the REN system. Namely, darknode registration,
payments, and cross-chain token swap.

CHAINSECURITY audited the smart contracts which are going to be deployed on the public Ethereum chain.
Audits of CHAINSECURITY use state-of-the-art tools for detection of generic vulnerabilities and checks of cus-
tom functional requirements. Additionally, a thorough manual code review by leading experts helps to ensure
the highest security standards. During the audit, CHAINSECURITY was able to help REN in addressing several
security, trust and design issues of high, medium and low severity. The employed coding practices and partial
documentation increased the complexity of the audit.

All reported issues have been addressed by REN. CHAINSECURITY has no further concerns regarding the
audited smart contracts.

ChainSecurity Audit Report

Audit Overview

Methodology

CHAINSECURITY’s methodology in performing the security audit consisted of four chronologically executed
phases:

1.
2.

4.

Understanding the existing documentation, purpose and specifications of the smart contracts.
Executing automated tools to scan for generic security vulnerabilities.

Manual analysis covering both functional (best effort based on the provided documentation) and security
aspects of the smart contracts by one of our CHAINSECURITY experts.

Preparing the report with the individual vulnerability findings and potential exploits.

Scope

Source code files received | November 5, 2019

Git commit al11a29e6987ab0d32fadbe7806215e1459dec9a2

Initial Compiler SoLC compiler, version 0.5.12

Final code update received | November 25, 2019

I
I
EVM version | PETERSBURG
I
I
|

Final commit a8abcc3dcbd53b04a602a0bb522fcd46c60eb850

The scope of the audit is limited to the following source code files.

In Sc

ope File SHA-256 checksum

DarknodePayment/DarknodePayment.sol d7c£38£93d859e37£2031e98d0f3b7fa13d9402924b4630b3d1aaa3f8ef22068

DarknodePayment/DarknodePaymentStore.sol 0170427d0ae943202d086d583c19120£0cc95367e9d0abb752a6b1le91ea82066

DarknodeRegistry/DarknodeRegistry.sol 8c462e15b80071af2e22950d35d1036b3e9d56708cc0cc8b7a306c10caf7e753

DarknodeRegistry/DarknodeRegistryStore.sol ~ ££b04679ca5333b4b22639cab6e579£7200143513719818fe1c8135cd7474a53

M
J
¥4
i
z] Shifter/ERC20Shifted.sol 80ea237c6af42630bea8525c98848ad6f76ee90b550d23097e500a2¢c2£3334£2
m Shifter/IShifter.sol £09815dbfc9bb5cbb0117ed20bc3282£27096e5657314891cbdeOc2dc74ddbe8
m Shifter/Shifter.sol 34c46d5e6de9a850d916de958382d8a8316£57£8001b2afc350070d1efal3316d
m Shifter/ShifterRegistry.sol 2a67b6c5ca046169654d0bad6£47d1804d1d0£9221£6£3bdb9c6742e573e8268
m libraries/CanReclaimTokens.sol 45cbddfacb534ee6541a2aeaadd7558c5£1£07£68a9£92403200c681948a91328
m libraries/Claimable.sol c£19d856a726194e69a1c3841d45b7cf91bbe9a4936c2df468aea871£195c3ed
z] libraries/ERC20WithFees.sol 4a3109da3b3caad7a9eb5bb227a85f669b186261dd854a9f2006e3d534db152a
z’ libraries/LinkedList.sol d8ce39d6514af62234d98a04625c8b17ab704b18bdbcd4f6ae8f7c4435af194b
z’ libraries/String.sol 774££898b6b63d26d0e1b7dae2b01e8fb0f6b3b8bf4e620fdcbf16€3a90b5026

For these files the following categories of issues were considered:

In Scope Issue Category Description
m Security Issues Code vulnerabilities exploitable by malicious transactions
m Trust Issues Potential issues due to actors with excessive rights to critical functions
m Design Issues Implementation and design choices that do not conform to best practices

https://chainsecurity.com

https://chainsecurity.com

Depth
The security audit conducted by CHAINSECURITY was restricted to:

e Scanning the contracts listed above for generic security issues using automated systems and manually
inspecting the results.

e Manual audit of the contracts listed above for security issues.

Terminology

For the purpose of this audit, CHAINSECURITY has adopted the following terminology. For security vulnerabili-
ties, we specify the likelihood, impact and severity (inspired by the OWASP risk rating methodology').

Likelihood represents the likelihood of a security vulnerability to be encountered or exploited in the wild.
Impact specifies the technical and business-related consequences of an exploit.

Severity is derived from the likelihood and the impact calculated previously.

We categorise the findings, depending on their severities, into four distinct groups:

Low: can be considered less important
° m Medium: should be fixed
° 0 High: we strongly recommend fixing it before release

° e Critical: needs to be fixed before release

These severities are derived from the likelihood and the impact using the table below, following a standard
approach in risk assessment.

IMPACT

LIKELIHOOD

During the audit, concerns might arise or tools might flag certain security issues. After carefully inspecting
the potential security impact, we assign the following labels:

. no security impact

o the issue is addressed technically, for example by changing the source code

o WAAGLICEEETEON the issue is mitigated non-technically, for example by improving the user documentation
and specification

o WA\ lo[STol the issue is acknowledged and it is decided to be ignored, for example due to conflict-
ing requirements or other trade-offs in the system

Findings that are labeled as either or RALLLIEERE) are resolved and therefore pose no security
threat. Their severity is listed simply to give the reader a quick overview of what kind of issues were found
during the audit.

"https://www.owasp.org/index.php/0OWASP_Risk_Rating_Methodology

ChainSecurity Audit Report

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Limitations

Security auditing cannot uncover all existing vulnerabilities: even a contract in which no vulnerabilities are
found during the audit is not a guarantee of a secure smart contract. However, auditing enables the discovery
of vulnerabilities that were overlooked during development and areas where additional security measures are
necessary.

In most cases, applications are either fully protected against a certain type of attack, or they are completely
unprotected against it. Some of the issues may affect the entire smart contract application, while others lack
protection only in certain areas. This is why we carry out a source code review aimed at determining all issues
that need to be fixed. Within the customer-determined timeframe, CHAINSECURITY has performed a security
audit in order to discover as many vulnerabilities as possible.

https://chainsecurity.com

https://chainsecurity.com

System Overview

Ren

The goal of REN is to enable general-purpose privacy preserving dapps, where applications are run in secret
and all data is encrypted. REN will initially focus on three features to enable private decentralized exchanges.
e Zero-knowledge transaction layer to settle trades in secret.
e Interoperability layer to allow zero-knowledge trustless swaps between blockchains.

e Dark Pool layer that provides a secret order matching engine.
To implement these high-level features REN uses several cryptographic algorithms.

e zkSNARKS

e Shamir Secret Sharing (SSS)

e RZL, a custom Secure Multiparty Computation (sMPC) algorithm
These three features can be combined to create a Dark Pool. This is a type of decentralized exchange (DEX)
where over the counter (OTC) trades are possible but all data hidden. REN has created such a Dark Pool

named RenEx?. RenEx supports BTC, ZEC, BCH, USDT, ETH and DAI. To enable cross-chain trades each
non-Ethereum token has a special ERC20 token contract.

RenVM

REN is build on a decentralized virtual machine called RenVM. RenVM implements three features using the
cryptographic algorithms. Combining these features enables building stateful applications in RenVM.

e Execution of zero-knowledge applications.

e Zero-knowledge data storage.

e Permission-based access to zero-knowledge data.

The RenVM is powered by a decentralized and trustless network of machines called Darknodes. The Darkn-
odes contribute their CPU time and disk space in exchange for fees. The network is permissionless, anybody
can join by putting down a bond of 100000 REN TOKENs. Misbehaving nodes can be punished by slashing their
bond. The network is also Byzantine Fault Tolerant (BFT). The consensus algorithm used is called Hyperdrive,
a modified version of the Tendermint consensus algorithm.

Contracts

REN makes use of Ethereum smart contracts for several low-level features.

e Darknode registration and slashing, implemented in the DarknodeRegistry contract.
e Darknode fee payments, implemented in the DarknodePayment contract.
e Cross-chain token swap, implemented in the Shi fter contract.
The first two contracts above each have a store contract. This makes it possible to replace the logic contract

without losing the data. The last contract has an accompanying Shi fterRegistry contract which keeps track
of all registered Shi fter contracts.

2https://ren.exchange

ChainSecurity Audit Report

Darknode Registry

Darknodes wanting to join the network can register in the Darknode Registry contract by depositing a 100000
REN bond. Besides registering, this contract also allows a Darknode operator to deregister a Darknode. After
deregistration, anybody can call refund to refund a certain Darknode’s bond to the Darknode owner. Once a
previously registered Darknode becomes deregistered, it is allowed register again.

There is also a slash function that can only be called by the DarknodeSlasher contract. This function will
deregister the Darknode and divide (part of) the bond between the challenger and DarknodePaymentStore
contract.

Darknodes can be in one of six states and the state can only move forward.

Pending Registration
Registered

Pending Deregistration
Deregistered

oM~ wbh -

Cooling
6. Refunded
The DarknodeRegistry partitions time into discrete intervals, called epochs. An epoch takes a certain amount

of time (2 days on mainnet), and can be configured by the owner. Anybody can call the epoch function to move
the contract to the next epoch at the right time.

The store contract is called DarknodeRegistryStore and is used to store:

o List of Darknode structs.
e The REN TOKEN bond of each Darknode.

Darknode Payment

The Darknode Payment contract takes care of Darknode fee payments. Darknodes earn fees over deposits
during each payment cycle. Deposits can be in any registered ERC20 token or ETH, and anybody is allowed
to deposit funds. Darknodes can claim their earned fees by calling claim. The DarknodePayment payment
cycles are synced to the DarknodeRegistry epochs. Updating the epoch inside the DarknodeRegistry will
automatically also update the payment cycle inside DarknodePayment.

The store contract is called DarknodePaymentStore and is used to store:

e Deposits of any ERC20 token and ETH.
e Claimed reward balance per token for each Darknode.

Shifter

Each token that is not on Ethereum has its own special ERC20 token contract. This custom ERC20 contract
adds a mint and burn function which can only be executed by the owner. Each ERC20 token contract has
a separate Shifter contract, which will be set as the token contract's owner. The Shifter contract contains
two functions which can be called by anyone. However, the shiftIn function requires a signature of the
mintAuthority account. The mintAutority can be configured by the Shi fter contract owner.

e shiftlIn, used to mint ERC20 tokens to any address, and sending a fee to feeRecipient.

e shiftOut, used to burn ERC20 token of caller, and sending a fee to feeRecipient.

Both of these shift functions will send a percentage of the shifted amount as a fee to the feeRecipient.
The ShifterRegistry is used to register one Shifter per ERC20 token. This registry is not used in any of
the other contracts. It only serves as an easy way to find out all the registered cross-chain ERC20 tokens, and
their attached Shifter contract address. The deployment scripts contain three of such cross-chain ERC20
tokens.

e zBTC, used to shift in/out Bitcoin.

e zZEC, used to shift in/out ZCash.

e zBCH, used to shift in/out Bitcoin Cash.

m https://chainsecurity.com

https://chainsecurity.com

System Roles
In this section we outline per contract the different roles, their permissions and purpose within the system.

DarknodeRegistry

Deployer The deployer can set the initial parameters: version, minimum bond, minimum epoch interval,
minimum pod size, REN TOKEN address, and DarknodeRegistryStore address. The deployer will
also be set as the owner of the contract.

Owner The owner can transfer ownership and update the minimum bond, minimum epoch interval, min-
imum pod size, and DarknodeSlasher/DarknodePayment contract addresses. Furthermore, the
owner can recover any accidentally sent ERC20 tokens or ETH, and blacklist tokens for recovery.

Darknode owner The Darknode owner can deregister their Darknode, but only if it is in the correct state.

Slasher The slasher can call the slash function to slash a misbehaving Darknode. This will also dereg-
ister the Darknode.

Anybody There are a number of functions which can be called by anybody.

e register, to register a Darknode.

e epoch, to move the contract to the next epoch, but only if the current epoch time has passed.

e refund, to remove a Darknode which is in state Refundable, sending its bond to the Darknode
owner.

DarknodeRegistryStore

Deployer The deployer can set the version and REN TOKEN address. The deployer will also be set as
the owner of the contract.

Owner The owner can transfer ownership and add/remove Darknodes. Furthermore, the owner can
decrease the bond of a registered Darknode. The owner can also recover any accidentally sent
ERC20 tokens or ETH, and blacklist tokens for recovery. After deployment the owner will transfer
ownership to the DarknodeRegistry contract. Therefore, the above mentioned functions will only
be called from functions inside DarknodeRe gistry.

DarknodePayment

Deployer The deployer can set the initial parameters: version, DarknodeRegistry/DarknodePaymentSt
ore contract addresses, cycle payout percentage and the payment cycle changer. The deployer will
also be set as the owner of the contract.

Owner The owner can transfer ownership and update the DarknodeRegistry address, cycle payout
percentage and cycle changer. Furthermore, the owner can register/deregister tokens. After de-
ployment the owner will set the DarknodeRegistry contract as cycle changer, and register some
tokens.

Cycle changer The cycle changer can call changeCycle to update the payment cycle. This role is
assigned to the DarknodeRegistry contract which will call this function inside epoch.

Anybody There are a number of functions which can be called by anybody.

e deposit, to deposit ERC20 tokens or ETH into the DarknodePaymentStore.

e fallback function, to deposit ETH into the DarknodePaymentStore.

e forward, to forward ERC20 tokens or ETH mistakenly sent to this contract to the DarknodePay
mentStore.

e withdraw, to withdraw the Darknode balance of a particular ERC20 token or ETH to the Dark-
node owner.

e withdrawMultiple, to withdraw multiple ERC20 tokens and/or ETH in one call.

e claim, to add any earned tokens in the previous payment cycle for a particular Darknode to that
Darknode’s balances inside the DarknodePaymentStore.

DarknodePaymentStore
Deployer The deployer can set the initial parameter: version. The deployer will also be set as the owner
of the contract.

Owner The owner can transfer ownership, increment Darknode token balances, and transfer Darkn-
ode tokens. After deployment the owner will transfer ownership to the DarknodePayment contract.
Therefore, the above mentioned functions will only be called from functions inside DarknodePayment.

ChainSecurity Audit Report

ShifterRegistry
Deployer The deployer can set no initial parameters. The deployer will also be set as the owner of the
contract.

Owner The owner can transfer ownership and add/update/remove Shifters (together with the corre-
sponding token address) to the registry. Furthermore, the owner can recover any accidentally sent
ERC20 tokens or ETH.

Shifter
Deployer The deployer can set the initial parameters: minimum shift amount, ERC20 token address,
mint authority, shift in/out fee, and the fee recipient.

Owner The owner can transfer ownership and update the minimum shift amount, mint authority, shift
in/out fee, and the fee recipient. Furthermore, the owner can recover any accidentally sent ERC20
tokens or ETH, and blacklist tokens for recovery.

Mint Authority The mint authority needs to off-chain sign the data that is passed into the shiftIn
function. The mint authority will be the RenVM. The private key for this account is managed through
sMPC.

Fee Recipient The fee recipient will receive the fees from calls to shi ftIn/shiftOut.

Anybody Anybody can call the shiftIn function to mint tokens. However, this function requires data
signed by the mint authority. The shi ftOut function can be called by anybody to burn their tokens.

Trust Model

Here, we present the trust assumptions for the roles in the system as provided by REN. Auditing the enforce-
ment of these assumptions is outside the scope of the audit. Users of REN should keep in mind that they have
to rely on REN to correctly implement and enforce these trust assumptions.

Deployer The deployer is trusted to use the correct code during deployment and set the right parameters.
Owner The owner of each contract is frusted to call the right functions with valid parameters.
Slasher The slasher is frusted to perform valid slashes.

Mint Authority The mint authority will be the RenVM, which uses sMPC to generate signatures. It is frusted
to call mint only when the RenVM produced a valid signature.

Darknode A Darknode is semi-trusted, it is one node in the RenVM network of Darknodes. Multiple Darknodes
would have to become malicious before the RenVM outcome would become affected.

Darknode owner A Darknode owner is untrusted and assumed to be potentially malicious.

User A regular user is untrusted and assumed to be potentially malicious.

https://chainsecurity.com

https://chainsecurity.com

Best Practices in REN’s project

CHAINSECURITY is determined to deliver the best results to ensure the security of a project. To enable us to do
so, we are listing Hard Requirements which must be fulfilled to allow us to start the audit. Furthermore we are
providing a list of proven best practices. Following them will make audits more meaningful by allowing efforts
to be focused on subtle and project-specific issues rather than the fulfiiment of general guidelines.

Hard Requirements
These requirements ensure that the REN’s project can be audited by CHAINSECURITY.

All files and software for the audit have been provided to CHAINSECURITY

The project needs to be complete. Code must be frozen and the relevant commit or files must have
been sentto CHAINSECURITY. All third party code (like libraries) and third-party software (like the solidity
compiler) must be exactly specified or made available. Third party code can be located in a folder
separated from client code (and the separation needs to be clear) or included as dependencies. If
dependencies are used, the version(s) need to be fixed.

m The code must compile and the required compiler version must be specified. When using outdated
versions with known issues, clear reasons for using these versions are being provided.

|Z[There are migration/deployment scripts executable by CHAINSECURITY and their use is documented.

m The code is provided as a Git repository to allow reviewing of future code changes.

Best Practices

Although these requirements are not as important as the previous ones, they still help to make the audit more
valuable.

IZ There are no compiler warnings, or warnings are documented.
m Code duplication is minimal, or justified and documented.
IZ The output of the build process (including possible flattened files) is not committed to the Git repository.

m The project only contains audit-related files, or, if this is not possible, a meaningful distinction is made
between modules that have to be audited and modules that CHAINSECURITY should assume are correct
and out-of-scope.

IZ There is no dead code.
m The code is well-documented.

The high-level specification is thorough and enables a quick understanding of the project without any
need to look at the code.

Both the code documentation and the high-level specification are up-to-date with respect to the code
version CHAINSECURITY audits.

m Functions are grouped together according to either the Solidity guidelines?, or to their functionality.

Smart Contract Test Suite

In this section, CHAINSECURITY comments on the smart contract test suite of REN. While the test suite is not
a component of the audit, a good test suite is likely to result in better code.

The tests seem extensive and appear to cover the intended use cases. The provided test cases also cover
failure cases. The tests contain proper assertions to check for the correct error messages making sure that
errors were handled as expected.

Shttps://solidity.readthedocs.io/en/v0.4.24/style-guide.html#order-of-functions

ChainSecurity Audit Report

https://solidity.readthedocs.io/en/v0.4.24/style-guide.html#order-of-functions

Security Issues

This section relates to our investigation into security issues. It is meant to highlight times when we found
specific issues, but also mentions what vulnerability classes do not appear, if relevant.

Anyone allowed to blacklist tokens for claiming 0

The DarknodeRegistryStore contract inherits from CanReclaimTokens. This allows the owner of the Darknode
RegistryStore to claim ETH and other ERC20 tokens that are (accidentally) sent to this contract.
In the CanReclaimTokens contract the following function is defined to blacklist a token by address:

function blacklistRecoverableToken(address _token) public {
recoverableTokensBlacklist[_token] = true;

}

Since the above function is public and has no access controls, anyone is allowed to call it and forever block
the claiming of ETH or any ERC20 tokens. REN should consider adding access control to this function.

Likelihood: High
Impact: Medium

Fixed: REN solved the problem by allowing only the Owner to call blacklistRecoverableToken.

recoverTokens does not use SafeERC20 :7::

The recoverTokens function can be used to transfer out any accidentally sent ERC20 tokens to the contract.
It does this by calling ERC20(_token).transfer(). There exist tokens which do not revert on failure, but
instead return false. Besides that there are also tokens that do not return true on success, but instead return
nothing. REN should use SafeERC20.safeTransfer to prevent both of these cases.

Likelihood: Low
Impact: Low

Fixed: REN solved the problem by using SafeERC20 for the transfer function call.

Deregistering token is immediate 0 v Addressed

The _claimDarknodeReward function loops through all registeredTokens to claim a Darknode’s rewards for
that token in the previous cycle. If the owner deregisters a token, the token is immediately removed from
registeredTokens. This means later calls after this cannot claim tokens for the deregistered token in the
previous cycle.

/// @notice Removes a token from the list of supported tokens.
/77 Deregistration is pending until next cycle.

According to the comment above the deregisterToken function, the deregistration would be pending until
the next cycle. Because the deregistration is immediate this will exclude other Darknodes from claiming that
token in this cycle. This puts the late claimers at a disadvantage to early claimers in a cycle where a token is
deregistered. The owner could limit the impact of this issue by calling the deregisterToken function as soon
as possible after or before an epoch change. Still, that is not a sound solution.

REN should make deregistrations pending until the next cycle, as the function comment states.

Likelihood: High
Impact: Medium

m https://chainsecurity.com

https://chainsecurity.com

Addressed: REN acknowledged that they decided that an immediate deregistration was the best approach for
a few reasons:

1. If there is an error in an ERC20 contract (or it is updated to contain some revert logic in one of its
functions) this can prevent an epoch being able to trigger correctly. Under these circumstances some
kind of mechanism to remove the token force-ably is needed.

2. Deregistration of a token can only be done by an owner. Right now, this is done by REN, but this will
be moved to a Darknode-owned DAO in the future (alongside ownership of other contracts). Darknodes
would have to collectively agree to deregister a token. The Darknodes are also the only ones affected by
an immediate deregistration. Immediate deregistration loses rewards earned from that token so far in the
current epoch, but no other effect is observed.

3. In the future, REN can also have the Darknode-owned DAO contract only able to deregister when it has
been planned this will happen after some time period.

REN will document these future changes and responsibilities of the Darknode-owned DAO, and the effect
that immediate deregistration has.

Floating pragma ‘

REN uses a floating pragma solidity #0.5.12. Contracts should be deployed with the same compiler version
and flags that have been used during testing and the audit. Locking the pragma helps to ensure that contracts
do not accidentally get deployed using, for example, an outdated compiler version that might introduce bugs
that affect the contract system negatively*.

Likelihood: Low
Impact: Low

Fixed: REN solved the problem by using specific solidity compiler version ©.5.12 in all contract files.

“https://github.com/SmartContractSecurity/SWC-registry/blob/b408709/entries/SWC-103.md

ChainSecurity Audit Report

https://github.com/SmartContractSecurity/SWC-registry/blob/b408709/entries/SWC-103.md

Trust Issues

This section reports functionality that is not enforced by the smart contract and hence correctness relies on
additional trust assumptions.

mintAuthority can be set to address zero 0

The owner of the Shi fter contract can set the mintAuthority to address zero. This would allow any incorrect
signature passed into shiftIn to be considered as a valid signature. Once mintAuthority is equal to address
zero, the following function would always return true when an incorrect signature is provided.

function verifySignature(bytes32 _signedMessageHash, bytes memory _sig)
public view returns (bool) {
return mintAuthority == ECDSA.recover(_signedMessageHash, _sig);

}

The mintAuthority address is set in the Shifter constructor. There is no validation present to check that
this address is not address zero. Furthermore, the owner can at any time call updateMintAuthority to set a
new mintAuthority. This function does also not check for address zero.

CHAINSECURITY recommends either to not allow mintAuthority address to be set to address zero, or to
revert the transaction when the ECDSA . recover function returns address zero.

Fixed: REN solved the problem by adding a check to ensure that the mintAuthority address cannot be set
to address zero.

https://chainsecurity.com

https://chainsecurity.com

Design Issues

This section lists general recommendations about the design and style of REN’s project. These recommenda-
tions highlight possible ways for REN to improve the code further.

Not using modifier for role based access *

In the DarknodePayment contract the changeCycle function can only be called by the cycleChanger account.
This is enforced by a require statement on the first line of changeCycle.

require(msg.sender == cycleChanger, "DarknodePayment: not cycle changer");

It is considered good practice to control the role based access using function modifiers. REN could consider
using a modifier for this check.

Fixed: REN added a new modifier onlyCycleChanger and uses it in the changeCycle function.

Division by 2 leaves 1 wei if odd :

The DarknodeRegistry.slash function divides the penalty by 2, then sends this reward to both the chal-
lenger and DarknodePaymentStore. If the penalty is odd, dividing by 2 will result in 1 wei being leftover. REN
could consider calculating both rewards such that they are exact.

Fixed: REN solved the problem by sending half the penalty to the _challenger address, and the remaining
penalty to the DarknodePaymentStore contract.

slash function does not check for existence m

The slash function does not check if the Darknode exists. If it does not exist there will be zero REN send to
both the challenger and DarknodePaymentStore. This is followed by the LogDarknodeSlashed event being
emitted. This does not lead to tokens being incorrectly sent. Still, REN should consider adding a check to make
sure the Darknode exists.

Fixed: REN solved the problem by adding a check in the slash function to ensure that the Darknode exists.

Code duplication in Shifter :

In the ShifterRegistry contract the following functions have the same code:

e getShifters: To get the registered shifters from LinkedList.
e getShiftedTokens: To get the registered shiftedTokens from LinkedList.
The above two function use the same code to generate the list of items from the LinkedList. It is considered

bad practice to have code duplication. CHAINSECURITY recommends adding a generic function that can then
be used by getShifters and getShi ftedTokens.

Fixed: REN removed the code duplication by adding a new generic elements function inside the LinkedList
contract.

ChainSecurity Audit Report “

safeTransferFromWithFees is non-ERC20 compliant m v Acknowledged

The safeTransferFromWithFees function will use SafeERC20.safeTransferFrom to transfer tokens and re-
turn the amount of tokens transferred. The ERC20 standard transferFrom function does not include an
optional fee on-top of the transfer amount. By expecting a token to do this, REN is expecting a token to be
non-ERC20 compliant. If an ERC20 token wants to implement a transferFromWithFees it should be named
differently than transferFrom.

Any ERC20 compliant token will only transfer the amount specified when calling transferFrom. In such
cases, the safeTransferFromWithFees function is unnecessary. The function will call Math.min with two
equal values. Furthermore, the input value will always be equal to the returned amount. Therefore, REN could
simply do SafeERC20.safeTransferFrom in the deposit function.

Acknowledged: REN acknowledged that the transferFromWithFees function was introduced because they
encountered tokens (DGX and TUSD) that can include an updatable fee at any time. These two tokens use an
internal fee (someone sends N dollars, but the receiver actually gets N — fee). Unlike some other tokens that
have external fees, and some even use things like demurrage.

The interface is not meant to be a replacement for ERC20s, but something that can wrap ERC20s to ensure
that the caller of the transfer function can know the actual amounts transferred regardless of how fees are
calculated (by checking balances before and after the transfer).

Using string as mapping key v Acknowledged

In the ShifterRegistry contract a mapping with string as key is defined as follows:

mapping (string=>address) private tokenBySymbol;

This is seen as code smell, as there could be two different strings which look the same using unicode charac-
ters, but are actually different.

Acknowledged: REN acknowledged that this trade-off was made to allow third-party contracts/programs to
look up shifters by their token’s symbol. Only the owner can register new tokens and the symbol is read
directly from the token.

Unnecessary local variable = PARNCe

In the register function the bond local variable is initialized with minimumBond:

// Use the current minimum bond as the darknode’s bond.
uint256 bond = minimumBond;

However, the bond variable is not modified later on in the function. Hence, there is no need for this variable
and REN could instead directly use minimumBond.

Fixed: REN solved the problem by removing the local variable bond from the function.

Darknode registration address zero allowed 0

Anyone is allowed to register a Darknode with any address, including address zero. By allowing address zero
to be registered, the links in the LinkedList can get messed up. However, since the LinkedList items are only
retrieved by key, the application doesn’t suffer from this.

If the LinkedList is empty, appending address zero has no effects besides inList being set to true. If
on the other hand there already exist some Darknodes in the LinkedList, the list becomes split in a way. Any
time address zero is appended to a non-empty LinkedList, it will update the address zero previous and next
pointers to point to itself (address zero). The first address appended after address zero was added will have
it's previous pointer set to address zero, instead of the existing last item. This comes down to the address
zero entry being the previous and next of more than one item.

Although it doesn’t have any negative effects on the application flow, CHAINSECURITY thinks this should
not be possible. REN is advised to disallow the insertion of address zero in the LinkedList.

ﬂ https://chainsecurity.com

https://chainsecurity.com

Fixed: REN solved the problem in the LinkedList contract by not allowing the zero address as element.

Removing last array item

The _deregisterToken function removes the last element of an array by doing:

registeredTokens.length = registeredTokens.length.sub(1);

Solidity contains a pop function to remove the last element of an array. This has build-in underflow checking
and costs less gas. Therefore, REN could consider using array . pop() to remove the last element of an array.

Fixed: REN solved the problem by using the pop() function on the registeredTokens array to remove the
last element.

Depositing unregistered tokens possible 0

Registering a token can only be performed by the owner and will be pending until the next cycle starts. Dark-
nodes can only claim tokens that have been registered. However, depositing tokens is allowed for any token
at any time by anyone. CHAINSECURITY thinks only allowing deposits for registered tokens would improve the
design.

Fixed: REN solved the problem by allowing deposits of only registered tokens.

ChainSecurity Audit Report

Recommendations / Suggestions

|:| A Darknode needs to be registered by calling DarknodeRegistry.register and passing the address
of the Darknode. The caller of this function will be set as the Darknode owner. However, these is no
check preventing these two addresses being the same. REN could add a check that prevents these two
addresses being the same.

|Z[The Shifter contract is not inheriting the IShifter interface.

The Claimable.transferOwnership function allows transferring ownership to another address. There
is no check that prevents the new owner being the same as the current owner. REN could consider
adding such a check.

m In the updateShi fter function the currentShi fter variable is initialized. However, on the next line the
variable is not used.

address currentShifter = shifterByToken|[_tokenAddress];
require(shifterByToken[_tokenAddress] != address(@xQ), "ShifterRegistry:
token not registered");

REN could use the variable on the second line above.

IZ In the removeShi fter function the mapping entry is updated like below:
shifterByToken[tokenAddress] = address(0xQ);
tokenBySymbol [_symbol] = address(0x0);
REN could use delete to remove this mapping entry. REN uses delete in several other places in the
code.

IZ In the shiftIn function an expression is unnecessarily surrounded by brackets:
uint256 absoluteFee = (_amount.mul(shiftInFee)).div(BIPS_DENOMINATOR);
The brackets are unnecessary since multiplication would be performed first, followed by the division.

The same applies to the shi ftOut function:

uint256 absoluteFee = (_amount.mul(shiftOutFee)).div(BIPS_DENOMINATOR);

IZ There a couple of events inside the contracts which have arguments that are not indexed, but where it
makes sense to index them. These events are:

DarknodeRegistry

— LogSlasherUpdated
— LogDarknodePaymentUpdated

DarknodePayment

— LogCycleChangerChanged

LogTokenRegistered

LogTokenDeregistered

LogDarknodeRegistryUpdated
m The fromBytes32 function performs the following cast on the first line:

bytes32 value = bytes32(uint256(_value));

However, this is unnecessary as _value is already of types bytes32.

ml https://chainsecurity.com

https://chainsecurity.com

Addendum and General Considerations

Blockchains and especially the Ethereum Blockchain might often behave differently from common software.
There are many pitfalls which apply to all smart contracts on the Ethereum blockchain.

In this section, CHAINSECURITY mentions general issues which are relevant to REN’s code, but do not
require a fix. Additionally, in this section CHAINSECURITY clarifies or extends the information from the previous
sections of this security report. This section, therefore, serves as a reminder to REN and to raise awareness
of these issues among potential users.

Dependence on block time information

REN uses block.timestamp / now inside the DarknodeRegistry contract. Although block time manipulation is
considered hard to perform, a malicious miner is able to move forward block timestamps by around 15 seconds
compared to the actual time. However, in the context of the project and given the required effort, this is not
perceived as an issue®.

Forcing ETH into a smart contract

Regular ETH transfers to smart contracts can be blocked by those smart contracts. On the high-level this
happens if the according solidity function is not marked as payable. However, on the EVM levels there exist
different techniques to transfer ETH in unblockable ways, e.g. through selfdestruct in another contracts.
Therefore, many contracts might theoretically observe “locked ETH”, meaning that ETH cannot leave the smart
contract any more. In most of these cases, it provides no advantage to the attacker and is therefore not
classified as an issue.

Rounding Errors

(Unsigned) integer divisions generally suffer from rounding errors. The same holds true for divisions inside
the EVM. Therefore, the results of arithmetic operations can be imprecise. The effects of these errors can be
reduced by ordering arithmetic operations in a numerically stable manner. However, even then minor errors
(e.g. in the order of one token wei) can occur.

There are multiple places throughout the contracts where REN does division before multiplication. For
example inside the slash function. However, CHAINSECURITY expects these errors to have a negligible effect
due to use of 18 decimals.

Shttps://consensys.github.io/smart-contract-best-practices/recommendations/#the-15-second-rule

ChainSecurity Audit Report

https://consensys.github.io/smart-contract-best-practices/recommendations/#the-15-second-rule

Disclaimer

UPON REQUEST BY REN, CHAINSECURITY LTD. AGREES TO MAKE THIS AUDIT REPORT PUBLIC. THE
CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS AND WAR-
RANTIES OF ANY KIND, AND CHAINSECURITY LTD. DISCLAIMS ANY LIABILITY FOR DAMAGE ARISING
OUT OF, OR IN CONNECTION WITH, THIS AUDIT REPORT. COPYRIGHT OF THIS REPORT REMAINS

WITH CHAINSECURITY LTD..

Contact:

ChainSecurity AG
Krahbuhlstrasse 58

8044 Zurich, Switzerland
contact@chainsecurity.com

m https://chainsecurity.com

mailto:contact@chainsecurity.com
https://chainsecurity.com

	Foreword
	Executive Summary
	Audit Overview
	Methodology
	Scope
	Depth
	Terminology
	Limitations

	System Overview
	Ren
	RenVM
	Contracts
	Darknode Registry
	Darknode Payment
	Shifter
	System Roles
	Trust Model

	Best Practices in Ren's project
	Hard Requirements
	Best Practices
	Smart Contract Test Suite

	Security Issues
	Anyone allowed to blacklist tokens for claiming repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	recoverTokens does not use SafeERC20 repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Deregistering token is immediate repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Floating pragma repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Trust Issues
	mintAuthority can be set to address zero repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Design Issues
	Not using modifier for role based access repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Division by 2 leaves 1 wei if odd repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	slash function does not check for existence repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Code duplication in Shifter repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	safeTransferFromWithFees is non-ERC20 compliant repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Using string as mapping key repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Unnecessary local variable repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Darknode registration address zero allowed repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Removing last array item repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Depositing unregistered tokens possible repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Recommendations / Suggestions
	Addendum and General Considerations
	Dependence on block time information
	Forcing ETH into a smart contract
	Rounding Errors

	Disclaimer

