-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathtrain_mamba.py
60 lines (47 loc) · 2.04 KB
/
train_mamba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
import argparse
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
from transformers import AutoTokenizer, TrainingArguments
from trainer.data import ChatDataModule
from trainer.mamba_trainer import MambaTrainer
def run(args):
model = MambaLMHeadModel.from_pretrained(args.model, dtype=torch.bfloat16, device="cuda")
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
tokenizer.eos_token = "<|endoftext|>"
tokenizer.pad_token = tokenizer.eos_token
tokenizer.chat_template = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta").chat_template
data_module = ChatDataModule(
tokenizer=tokenizer,
data_path=args.data_path,
conversation_template=tokenizer.chat_template,
max_tokens=2048
)
trainer = MambaTrainer(
model=model,
train_dataset=data_module.dataset,
tokenizer=tokenizer,
args=TrainingArguments(
learning_rate=args.learning_rate,
num_train_epochs=args.num_epochs,
per_device_train_batch_size=args.batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
optim=args.optim,
output_dir="mamba-chat",
logging_steps=50,
save_steps=500,
),
data_collator=data_module.data_collator,
)
trainer.train()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="state-spaces/mamba-2.8b")
parser.add_argument("--tokenizer", type=str, default="EleutherAI/gpt-neox-20b")
parser.add_argument("--learning_rate", type=float, default=5e-5)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--optim", type=str, default="adamw_torch")
parser.add_argument("--data_path", type=str, default="./data/ultrachat_small.jsonl")
parser.add_argument("--num_epochs", type=int, default=1)
args = parser.parse_args()
run(args)