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Abstract

Complexity impairs the maintainability and understandability of conceptual models. Com-

plexity metrics have been used in software engineering and business process management

(BPM) to capture the degree of complexity of conceptual models. The recent introduction

of the Decision Model and Notation (DMN) standard provides opportunities to shift towards

the Separation of Concerns paradigm when it comes to modelling processes and decisions.

However, unlike for processes, no studies exist that address the representational complexity

of DMN decision models. In this paper, we provide an initial set of complexity metrics

for DMN models. We gather insights from the process modelling and software engineering

fields to propose complexity metrics for DMN decision models. Additionally, we provide an

empirical complexity assessment of DMN decision models. For the decision requirements

level of the DMN standard 19 metrics were proposed, while 7 metrics were put forward for

the decision logic level. For decision requirements, the model size-based metrics, the Durfee

Square Metric (DSM) and the Perfect Square Metric (PSM) prove to be the most suitable.

For the decision logic level of DMN the Hit Policy Usage (HPU) and the Total Number

of Input Variables (TNIV) were evaluated as suitable for measuring DMN decision table
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complexity.
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1. Introduction

Decision modelling has seen a surge in scientific literature, as illustrated by the vast

body of recent work on DMN [1–6]. DMN 1.2 [7] is a standard for decision modelling

introduced by the Object Management Group. DMN consists of two levels. Firstly, the

decision requirement level in the form of a Decision Requirement Diagram (DRD) is used to5

portray the requirements of decisions and the dependencies between the different constructs

in the decision model. Secondly, the decision logic level is used to specify the underlying

decision logic, usually in the form of decision tables. The standard also provides an expression

language FEEL (Friendly Enough Expression Language), as well as boxed expressions and

decision tables for the notation of the decision logic. In DMN rectangles are used to depict10

decisions, corner-cut rectangles for business knowledge models, and ovals to represent data

input. The arrows represent information requirements (from data or decisions). DMN aims

at providing a clear and simple representation of decisions in a declarative form and offers

no decision resolution mechanism of its own. Rather, the invoking context, e.g. a business

process, is responsible for ensuring a correct invocation and enactment of the decision, as well15

as ensuring data processing and the storage and propagation of data and decision outcomes

throughout the process. This makes DMN particularly interesting for a Service-Oriented

Architecture, as DMN is independent of the applications and the invoking context. This

way, DMN is able to capitalise on the benefits that are inherent in service-orientation in
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terms of maintainability, scalability, understandability, and flexibility, both for modelling20

and mining decisions.

Complexity metrics have been adopted in the BPM field for process model complexity

and applied on for instance the Business Process Model and Notation (BPMN) standard [8].

Despite the adoption of the DMN standard in the BPM field, a discussion of DMN model

complexity is still lacking in literature. This paper aims at addressing that research gap and25

at proposing a set of metrics for the DMN standard, both at the decision requirements level

as well as at the decision logic level. Note that all metrics that will be proposed in this paper

have a lower value when indicating simpler models and a higher value when indicating more

complex models.

The contribution of this paper is threefold:30

1. We are the first to provide a set of complexity metrics tailored towards the decision

requirements level of DMN decision models.

2. This paper is the first to provide a set of complexity metrics tailored towards the

decision logic level of DMN decision models.

3. Finally, we are the first to empirically address DMN decision model complexity.35

This paper is structured as follows. In Section 2, relevant works on complexity are

provided, as well as running examples that will be used throughout the paper. Section 3

proposes a set of DRD metrics for DMN models, while Section 4 proposes metrics for the

decision logic level of DMN, i.e. the decision tables. Section 5 outlines a discussion of

the evolution of the proposed metrics in terms of their evolution across models. Section40
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6 provides an empirical evaluation of the metrics and thus of DMN model complexity. In

Section 7 a discussion about integrated decision requirements and decision logic metrics

is provided together with an agenda for future research. Finally, Section 8 concludes the

paper.

2. Related Work and Running Example45

In this section we provide an overview of related work for DMN, complexity metrics in the

BPM field, and complexity assessments to the DMN standard in particular. Additionally, we

provide running examples which will be used to illustrate the proposed complexity metrics

in the subsequent sections.

2.1. Related Work50

Recent BPM literature moves towards accommodating decision management into the

paradigms of The Separation of Concerns (SoC) [2, 9, 10] and and Service-Oriented Archi-

tecture (SOA) [5], by externalising decisions and encapsulating them into separate decision

models, hence implementing decisions as externalised services. Literature proposes several

conceptual decision service platforms and frameworks [5, 11, 12] and industry has adopted55

this trend, as several decision service systems have appeared, e.g. SAP Decision Service

Management [13]. This externalisation of decisions from processes provides a plethora of

advantages regarding maintainability and flexibility of both process and decision models

[2, 5, 10, 14–17].

A plethora of works on software complexity metrics exists [18–20]. Additionally, software60

metrics have been transformed and applied on processes and workflow nets in a vast array of
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studies [21–27]. Most of these studies focus on the BPMN standard. A systematic literature

review of process metrics is provided in [28], where the authors identify and discuss 65 process

metrics found in BPM literature.

Unlike for processes and BPMN, few works on complexity metrics for DMN models exist.65

In [29], the meta model complexity of the DMN modelling method is assessed according to

the theory specified by [30]. Additionally, an exploratory study of the notational aspects of

DMN was conducted in [31]. In this study the authors focus on the cognitive analysis of the

DMN notation in the light of theories on effective visual design. Hence, DMN complexity

was assessed on a meta model level, i.e. the theoretical complexity of the modelling method70

as a whole, and on the cognitive visual level. However, no works on the complexity of DMN

decision models exist in literature. In the following sections, we propose an initial set of

complexity metrics for DMN decision models.

2.2. Running Examples

Figure 1 provides a running example of a DRD model that will be used in the coming75

sections to illustrate the decision requirements level complexity metrics. The DRD represents

an event selection decision based on the preferred location and the food and drinks that are

offered, while taking into consideration the season, the number of guests, whether children

are allowed, the sleeping facilities, and the budget. The value of every proposed DRD metric

will be calculated for this DRD.80

Figure 2 provides a running example of a DMN decision table that will be used in the

coming sections to illustrate the decision logic level complexity metrics. The decision table

represents the decision logic of choosing an accommodation type for a vacation based on the
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Event offer

Drinks Location

Food

Trend

Event managerBudget

Children

Sleeping facilities

Season Number of guests

Contact list

Figure 1: DMN DRD running example.

type of residency, the level of comfort, the number of adults and the number of children. The

value of every proposed DMN decision table metric will be calculated for this DMN table.85

3. Decision Requirements Diagram Metrics

In this section we provide a set of DRD metrics that are capable of representing graph

complexity in analogy with business process or software engineering literature. For every

metric, a brief explanation is provided. Additionally, we calculate the value of every proposed

metric for the running example provided in Figure 1. An overview of the metrics and the90

metric values for the running example is given in Table 3. Later on, we will discuss the

evolution of the metrics and validate them through an exploratory survey.

3.1. Number of Decisions (NOD)

As proposed by [23], BPMN complexity can be measured by counting the number of

activities. They called this metric number of activities (NOA), which is a summation of all95
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Figure 2: DMN decision table running example.

activity elements in the model. A similar metric can be worked out for DMN, counting the

number of decision nodes in the DRD model instead of counting the activities, thus arriving

to the metric of number of decisions (NOD). Applied to the running example of Figure 1, the

NOD is 4. As the models grow larger, they tend to have more decision elements. Thus, this

metric will go up if a decision element is added to the model, indicating that the model has100

become more complex according to this metric. Given that DMN is a standard for modelling

decisions, we assume that the number of decisions that are modelled within one DRD model

will be indicative of the complexity of the model. However, note that the granularity of

the DRD will play a crucial role as well, as one decision node can possibly be decomposed

into a number of decision nodes each containing a portion of the underlying decision logic.105

Therefore, it will be of paramount importance to develop complexity metrics for the logic
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layer of DMN as well to capture these changes in granularity of the DRD model.

3.2. Number of Elements (NOE)

The number of elements (NOE) is the sum of all building blocks of the DRD. Hence,

NOE takes into account all elements of the DRD rather than only the decision nodes, as is110

the case in the NOD metric. More specifically:

NOE = #decisions + #inputs + #knowledgesources

+ #businessknowledgemodels + #informationrequirements

+ #knowledgerequirements + #authorityrequirements

Applied to the running example model in Figure 1, the NOE is 27. The larger the DRD115

model, the higher NOE will be. This is self-explanatory, as DRD models are solely made up

out of these elements.

3.3. Number of Basic Elements (NOBE)

The most basic elements of a DRD model are decisions nodes, input nodes, and infor-

mation requirements. They form the spine of a DRD model. Therefore, the number of basic120

elements (NOBE) probably is a good metric. NOBE can be calculated as follows:

NOBE = #decisions + #inputs + #informationrequirements

Applied to the running example in Figure 1, the NOBE is 20. Clearly, the NOBE metric

will be higher as basic elements are added to the DRD model.

3.4. Number of Decisions and Information Requirements (NODIR)125

The NOAC metric (Number Of Activities and Control-flows) was suggested in BPM

literature, such as in [23], and it requires counting the activities and control flow elements in
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BPMN. The NOAC summation consisting of the number of activities and control flows (splits

to be precise) can be applied in the DMN context as well by summing up the number of all

decisions elements and information requirements in the DRD. We call this metric Number130

Of Decisions and Information Requirements (NODIR).

NODIR = #decsions + #informationrequirements

Applied to the running example in Figure 1, the NODIR = 4 + 11 = 15.

3.5. Density (Dens)

This Density metric was suggested by [25], and later discussed by [28] and [21]. It aims135

at measuring the ratio of the actual and the maximum number of arcs in the BPMN model.

The metric can be adapted to measure DMN complexity, more precisely by dividing the

actual number of arcs by maximum number of arcs possible.

Dens = #ActualArcs/#MaximumArcs

For counting the maximum number of arcs, only valid connections (according to DMN140

rules) are considered. This metric can be applied to the running example in Figure 1. In

that case, the Density can be calculated as follows:

Dens = 15/38

3.6. Total Number of Data Objects (TNDO)

As discussed in [28], the total number of data objects (TNDO) represents all data objects145

in the BPMN diagram. For a DRD, data objects are represented by all input data objects

present in the model. The running example in Figure 1 has 5 input data elements, hence

the TNDO is 5.
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Similar to the explanation of NOD and NODIR, bigger models tend to have more input

data elements. By adding a data input element to a model, the TNDO metric will grow.150

3.7. Number of Complex Decisions (NCD)

The Number of Complex Decisions (NCD) metric is extracted from [28]. It requires all

complex decisions in the BPMN diagram to be counted and is represented by the summation

total. In this case, complex decisions represent all decisions that require the output of

one or more sub-decisions as input. In other terms, all decisions with another decision as155

predecessor. Consequently, understanding the complex decisions underlying logic requires

unfolding this complex decision into smaller subsets of supporting decisions to expose the

full decision path. The NCD of the running example in Figure 1, is 2 since the DRD model

contains 2 of these complex decisions, i.e. Drinks and Event Offer.

3.8. Durfee Square Metric (DSM)160

As described in [21], the Durfee Square Metric is obtained by executing the following

process: first, list all used elements in the BPMN model. Then count each element type’s

occurrence. Next, the elements need to be ordered from most used to least used and are

given indices i representing the total number of element occurrences in the model. The DSM

is represented by the index i of the last element with an occurrence greater than or equal to165

that index. This metric can be adopted directly for usage with DMN. The elements used is

the complete set of existing nodes and arcs. For instance, in the running example in Figure

1, we get the table shown in Table 1. This table shows the DSM for this model is 3.
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Index Element Occurrence Index 6 Occurrence

1 Information
requirement

11 YES

2 Input data 5 YES

3 Decision 4 YES

4 Authority
requirement

3 NO

5 Knowledge
source

2 NO

6 Business
knowledge
model

1 NO

7 Knowledge
requirement

1 NO

Table 1: Durfee Square Metric for the model in Figure 1.

3.9. Perfect Square Metric (PSM)

This metric can be calculated by listing the set of element types ranked in a decreasing170

order by the number of their occurrences, as described in [21]. The PSM is the (unique)

largest index where the set of element types, starting from index 1 to the current index i,

cumulatively occur at least i2 times. The authors of [21] continue to assert that the metric

is easy to interpret and provides basic information about the structural complexity of the

model. The metric was based on the g-index [21, 28]. Non-occurring elements are not175

considered. This metric was adapted to be usable with the DMN standard and its elements

as depicted in Table 2, where the PSM metric has a value of 5 for the running example in

Figure 1.
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Index Element Occurrence Cummulative occ. Index2 Index2 6 Cum. occ.

1 Information
requirement

11 11 1 YES

2 Input data 5 16 4 YES

3 Decision 4 20 9 YES

4 Authority
requirement

3 23 16 YES

5 Knowledge
source

2 25 25 YES

6 Business
knowledge
model

1 26 36 NO

7 Knowledge
requirement

1 27 49 NO

Table 2: Perfect Square Metric for the model in Figure 1.

3.10. Sequentiality (SEQ)

As pointed out by [28], the sequentiality (SEQ) of BPMN is equal to one minus the180

percentage of nodes with no more than one incoming and outgoing arrow. In other terms:

the percentage of nodes that have more than one successor or predecessor. This metric can

be used in the same way for the nodes of a DRD. Sequentiality is expressed as a number

between one and zero. If the DRD looks more like a sequence rather than a parallell network,

the value of the sequentiality metric will be low. This corresponds with a less complex model,185

and vice versa. Applying this to the running example in Figure 1, we get the formula:

SEQ = 1 − 4/12 = 0.6667.

Models with a lot of single-path sequences will have a low complexity value. Also note

that sequentiality in DMN will be greatly impacted by leaf elements since DRD models

usually have multiple input data elements, thus increasing the SEQ metric.190
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3.11. Decision Node Sequentiality (DNSEQ)

Similar to SEQ, we propose DNSEQ, which is expressed as one minus the percentage of

nodes with no more than one incoming and outgoing arrow. However, DNSEQ only takes

decision nodes and their connections into account instead of all model elements. In this way,

long tails of edge node sequences do not manipulate the metric value. Applying this to the195

running example in Figure 1, we get the following metric value:

DNSEQ = 1 − 3/4 = 0.25

3.12. Diameter (Diam)

The geodesic of two (connected) nodes in a graph is the shortest path between these

nodes. The diameter of a graph is the longest geodesic of that graph. In other terms: the200

diameter is the longest, shortest path [28]. This metric can also be used with DMN. Of

course, only valid connections are considered since the arcs have directions. The diameter

will be the longest shortest path between the root node and leave nodes. In the running

example in Figure 1, a diameter of 4 is found. This is the length of the path going from

Season to Food to Drinks to Event offer.205

3.13. Longest Path (LP)

Unlike BPMN, a DRD model does not allow loops. Therefore, the longest path (LP) can

be measured unambiguously. Calculating the longest path of a DRD graph, which in essence

is a directed acyclic graph (DAG), is done by topologically sorting the graph [32]. In the

running example of Figure 1, the LP of 4 is found. This is the length of the path going210

from Season to Event offer through Food and Drinks. It is not possible to find a longer

path in the model. Typically, the longest path and the sequentiality metrics of a DRD will
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oppose in value. When a model is more sequential, it will have a low complexity according

to the sequentiality metric. However, the model will typically have longer paths and thus

higher complexity according to the longest path metric. This proves the importance of using215

multiple complexity metrics to assess DRD model complexity from different perspectives. As

DRD models get bigger and more arcs, i.e. requirements in the DRD graph, are introduced,

the value of LP will indicate a higher complexity.

3.14. Average Vertex Degree (AVD)

The average vertex degree (AVD) [33] is calculated as the average of all incoming and220

outgoing connections across all nodes of the DRD. This can be applied directly to DRD

graphs. The bigger the AVD, the more complex the model. Applying this to the running

example in Figure 1, we get the following result:

AVD = (1 + 3 + 1 + 5 + 2 + 6 + 2 + 2 + 2 + 3 + 2 + 1)/12 = 2.5

The average vertex degree heavily relies on the number of connections between DRD225

model elements. In other terms, the more the decision requirements diagram resembles a

strongly connected network, the more complex it is. Additionally, it might be interesting to

look at the modular behaviour of the DRD model trough fan-in and fan-out metrics that are

heavily dependent on the average vertex degree.

3.15. Coefficient of Network Complexity (CNC)230

The coefficient of network complexity (CNC) was proposed to measure the degree of

complexity of a critical pass network [34]. It was adapted by [23] to measure the degree of

complexity in processes by dividing the number of arcs by the number of the activities, splits

and joins in the BPMN diagrams. It is possible to have identical values of the coefficient
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of network complexity for different models but with different comprehensibility due to a235

different set of used node types. This metric can be adopted for the DMN standard by

focusing on the nodes and arcs in the decision requirements diagram. Applying this to the

running example in Figure 1 gives the following result:

CNC = 15/12 = 1.25

Clearly, if an arc is added to the DRD graph, the CNC value will increase because of the240

increasing effect on the numerator.

3.16. Knot Count (KC)

In decision models, some components, more specifically requirement associations, may be

forced to cross each other. This is captured in the knot count (KC) metric. Each occurrence

of a crossing is expressed as a knot and each knot occurrence in a DRD means an increase in245

the complexity of understanding the model. Unlike the metrics used by [18] which focused on

counting the knots created by the crossing of only arrows, counting all requirement relation

crossings, regardless of their types, is suggested for DMN adoption. This is due to the fact

that DMN has different requirements relations that are frequently used between elements,

as opposed to process models where control flow arrows are highly represented. The higher250

the knot count value, the higher the complexity assumed. The running model in Figure 1

does not have knot occurrences, and hence has a knot count value of 0.

As more arcs and nodes are introduced in the DRD model, the more difficult it becomes

to avoid crossing arcs, i.e. knots. This will thus likely result in a higher knot count.
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3.17. Decision Nesting Depth (DND)255

The existing metric found in [20] measures complexity of business process graphs in terms

of hierarchical depth levels. DMN nesting is suggested to be in following levels: low-level

decisions (leaf nodes, which only create output from existing input data), mid-level decisions

(which take output of sub-decisions as input) and the top-level decision (root decision). Both

perspectives are possible: on the one hand, we can inspect the depth of DRDs, where the260

output of one node can be the input for another; on the other hand, in decision tables, where

a table can have output variables of other tables as input variables. The higher the DND,

the higher the complexity. This is explained by the high probability of existence of many

sub-decisions that are below the main decision which is a container of all lower-level decisions

starting from the lowest level (leaf nodes). This metrics value is expected to be similar to265

the Longest Path value with the difference that LP takes all model elements into account,

while DND only looks at decision elements. The running example in Figure 1 has a DND of

3.

3.18. Cyclomatic Complexity (CC)

In [23] the adaptation of McCabes cyclomatic complexity (CC) metric [35] for process is270

proposed. According to [19], this is one of the most widely used complexity metrics. The

cyclomatic complexity formula for non-strongly connected graphs, such as a DRD graph,

is the number of edges (E) minus the number of nodes (N) plus two times the number of

connected components. Since a decision requirements diagram is one connected component,

the formula can be reduced to the following calculation for the running example in Figure 1:275

CC = E −N + 2 = 15 − 12 + 2 = 5
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Thus, larger models, especially those that contain many arcs, are likely to have a higher

CC value.

DRD Metric Value
Number of decisions (NOD) 4.00
Number of elements (NOE) 27.00
Number of basic elements (NOBE) 20.00
Number of decisions and information requirements (NODIR) 15.00
Density (Dens) 0.39
Total number of Data Objects (TNDO) 5.00
Number of Complex Decisions (NCD) 2.00
Durfee Square Metric (DSM) 3.00
Perfect Square Metric (PSM) 5.00
Sequentiality (Seq) 0.67
Decision node sequentiality (DNS) 0.25
Diameter (Diam) 4.00
Longest Path (LP) 4.00
Average Vertrex Degree (AVD) 2.50
Coefficient of Network Complexity (CNC) 1.25
Knot Count (KC) 3.00
Decision Nesting Depth (DND) 3.00
Cyclomatic Complexity (CC) 5.00
Interface complexity (IC) 130.00

Table 3: DRD metrics as calculated for the running example in Figure 1.

3.19. Interface Complexity (IC)

In [23], the Information Flow Metric of [36] was adapted to BPMN by mapping the fan-280

in and fan-out of the original formula to the input and output of BPMN activities. This

resulted in the following formula to calculate IC:

ICD = Length ∗ (#inputs ∗ #outputs)2

The value of the variable length can be obtained by applying the lines of code or alter-

natively the cyclomatic complexity metric as defined by [35]. IC can be used with DMN as285

well. Here, the input and output of decision nodes can be used instead of those of activities.

Only the input and output originating from input data or decision elements are considered.

17



In an attempt to adapt IC for the complete DMN model, rather than just a single decision

node, the product of number of inputs and outputs is made for all decision nodes individually,

squared and then summed. This summation is then multiplied by the length, i.e. McCabe’s290

cyclometic compexity.

IC = CC ∗
∑

(#inputs ∗ #outputs)2

Applied to the running example in Figure 1, the interface complexity gives a value of

130.

4. Decision Table Metrics295

In this section we provide a set of decision table metrics. For every metric, a brief

explanation is provided. Additionally, we calculate the value of every proposed metric for

the running example provided in Figure 2. An overview of the metrics and the metric values

for the running example is given in Table 4. Later on, we will discuss the evolution of the

metrics and validate them through an exploratory survey.300

4.1. Average Number of Possible Input Scenarios (ANPI)

The variables of decision tables are divided in categories, or even into distinct integers,

expressions, and lists. More categories make the table more complex. For an individual table,

the number of possible input scenarios can be found by counting the number of possible input

combinations supported by the decision table. In the running example in Figure 2, there are305

58. The number of all theoretically possible input scenarios, all not necessarily supported by

the decision table, is defined as the product of all possible input values. This metric grows

when a table adds more input variables to the equation. The values for individual tables can
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be seen as a complexity metric. However, to evaluate the entire model, an average of these

values could be taken across all decision tables in the DMN model.310

4.2. Average Number of Possible Output Scenarios (ANPO)

For an individual table, the number of possible output scenarios can be found by counting

the possible unique output values. In the running example in Figure 2, there are 11. In most

cases, there will be only one output variable. Then, the ANPO will be equal to the number

of distinct output values.315

4.3. Average Number of Value Categories (ANVC)

The number of value categories of an input variable can easily be calculated by counting

the possible, distinct values of that variable. In variable Children of the running in Figure 2,

there are 4 possible value categories (0; > 0; 1; > 1). Note that this metric heavily depends

on whether the decision table is contracted and to which degree the contraction was carried320

out. This metric should be considered for individual variables. Again, to get the overall

result of the model, an average can be taken over all table input variables. In the case of

our running example a ANVC value of 4 is obtained.

4.4. Hit Policy Usage (HPU)

DMN Decision tables can have one of the following hit policies:325

• Unique hit (U)

• First-hit (F)

• Priority hit (P)
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• Any hit (A)

• Collect-with-aggregation (C+, C <, C >, C#)330

For the full explanation of DMN decision table hit policies, we refer to the DMN standard

[7].

Some hit policies are perceived more complex than others. Thus, some penalties can be

allocated to increase the complexity score of a table. For a DMN model, a metric Hit Policy

Usage (HPU) can be created. The value of this metric is the summation of all hit policy335

penalties pi of the tables.∑i=n
i=1 pi

With n = total number of tables in the model The following values of the penalty pi of

table i are arbitrarily chosen by us. However, these values are subjective and can be changed

to the modellers opinion.340

• pi = 0.1 when the hit policy is U

• pi = 0.3 when the hit policy is A

• pi = 0.4 when the hit policy is F or P

• pi = 0.7 when the hit policy is C < or C >

• pi = 0.8 when the hit policy is C+ or C#345

We perceive the Unique hit policy as the simplest kind since all input variants correspond

with only one output possibility. The Any hit policy is quite simple as well because an

arbitrary choice must be made. Generally speaking, the outcomes of the decision rules are
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ordered from high to low priority in a Priority hit policy table. In this case, its complexity

penalty is equal to those of First hit policy tables. However, one might argue that Priority350

hit policy tables are slightly more complex since it must be checked that the rules are in fact

ordered by priority. Finally, Collect-with-aggregation hit policy tables might be considered

the most complex type. In C < and C > hit policy tables, a single rule must be extracted,

while in both other forms calculations must be performed. The running example in Figure

2 has a Unique hit policy. Hence, a penalty of 0.1 is assigned to the model that uses this355

table.

4.5. Total Number of Rules (TNR)

For individual tables, the number of rules can easily be counted. The number of rules in

the running example in Figure 2 is 20. This value should not be high for an individual table.

Tables with the same number of input variables may have a different number of decision360

rules. The TNR makes the summation of the number of rules of all tables used in the model

to get an overall value. Note that this metric is also heavily dependent on whether the

decision table is contracted or not and to which degree the contraction is carried out.

4.6. Total Number of Input Variables (TNIV)

The input variables of an individual table can be found in the first part of the columns.365

It is good practice to prevent this number from growing too large. In the running example in

Figure 2, 4 input variables are found, i.e. Residency, Comfort, Adults, and Children. Tables

with the same number of decision rules may have a different number of input variables.

The total amount of input variables used in all decision tables has an impact on the overall
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complexity. Logically, the more variables decision tables use as input, the larger the table370

will grow and the more complex the overall model will be perceived.

4.7. Schema Size (SS)

For an individual table, the schema size is equal to the number of rows multiplied by the

number of columns. In the running example in Figure 2, there are 20 rows and 5 columns.

This gives us a SS of 100. Thus, the SS of an entire model is the summation of the separate375

table SS metrics. Table cells are often contracted. Therefore, it is important to note that

SS measures the table size, not the number of cells.

Decision Table Metric Value
Average number of possible input scenarios (ANPI) 42.00
Average number of possible output scenarios (ANPO) 11.00
Average number of value categories (ANVC) 4.00
Hit Policy Usage (HPU) 0.10
Total number of rules (TNR) 20.00
Total number of input variables (TNIV) 4.00
Schema Size (SS) 100.00

Table 4: Decision table metrics as calculated for the running example in Figure 2.

5. Expected Evolution of the Metrics

5.1. DRD Metrics

In this section we concisely discuss the evolution of the metric values when a certain380

element is added to the DRD model. We limit our discussion to adding arc requirements and

decision nodes to the DRD model respectively. When a decision requirements diagram gets

larger in terms of number of elements, most metrics will indicate that the representational

complexity of the decision model has increased. Model size is what most of the proposed

metrics rely on. NOD, NOE, NOBE, NODIR and TNDO are simple count metrics that385
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grow larger as relevant elements are added to the model. Other metrics, e.g. SEQ, LP,

AVD, CNC, KC, and CC, are also indirectly dependent on the number of DRD elements.

Here too, adding an element to the DRD model is likely to result in an increase in complexity

metric values.

5.2. Requirement Arcs390

The following metrics all rely on the number of arcs in the model, i.e. information

requirements, authority requirements, and knowledge requirements. When a requirement is

added to a DRD model:

• Density will increase because of the increasing effect on the numerator in the formula.

• NOE increases since it is the summation of all elements.395

• NOBE and NODIR increases if that arc is an information requirement.

• LP may increase, depending on whether the added arc results in a longer, longest path.

• AVD will definitely increase because the new connection will always positively impact

exactly two model elements, which in turn increases the overall average vertex degree.

• CNC will increase given the increasing effect on the numerator in the formula.400

• DND can never decrease. When a new information requirement forwards the output

of an existing decision to a non-complex decision, the receiving decision becomes a

complex decision which always increases the overall complexity.

• KC will increase if the new arc crosses existing arcs.
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• CC will increase given the increasing effect on the first term in the formula.405

• IC will increase if the added arc is an information requirement since there will be more

inputs and/or outputs per node.

5.3. Decision Nodes

The following metrics all rely on the number of decision nodes in the model. When a

decision node is added to a DRD model:410

• NOD increases by definition.

• NODIR increases, since it is the summation of the number of decision elements and

information requirements.

• NCD increases when the added node is not a leaf node. NCD remains the same if the

added node is a leaf node since it will be attached to a previously existing leaf node415

that becomes a complex decision. However, NCD will never decrease if a decision node

is added.

• NOE increases since it is the summation of all elements.

• NOBE increases since a decision node is a basic element

• LP is either not affected or will increase, depending on whether the added decision420

node results in a longer, longest path.

• CC stays unchanged or decreases. While the formula suggests that CC would increase,

this is not the case in reality. When a decision node is added, at least one edge is

added as well to connect the node to the rest of the graph.
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5.4. Link with Decision Table Metrics425

A growing total decision table size, i.e. an increasing SS, also often implies one or more

of the following:

• A larger NOD value. When there are more decision elements, there will be more tables.

However, these tables will be much smaller if larger decision tables are decomposed

into smaller sub-decisions.430

• ANVC and ANPI are larger as well. When certain variables get more value categories,

the decision tables that use these variables as input tend to become larger.

• The TNR is larger. When rules are added to a decision tables, the tables by definition

will also have more cells and SS will increase as well.

• The TNIV is larger. When additional input variables are introduced in a decision435

table, the table will also have more cells, and potentially more rules as well.

When more connections are made with the same amount of decision nodes, the tables

related to these nodes will likely have more input and/or output variables. This results in

larger decision tables. ANPI roughly corresponds to the average number of rows per table.

This means that ANPI and Density are expected to correlate in a positive way.440

Hence, there exists a trade off between the decision table metrics and the DRD metrics.

A complex decision table can represent a whole decision, resulting in high decision table

complexity and low DRD complexity. However, that same decision table can be decom-

posed into multiple smaller sub-decision tables, thus decreasing the complexity of individual

decision tables at the cost of an increasing size of the DRD model.445
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5.5. Overview of expected metric evolution

In this subsection we provide an overview of the evolution of the metrics when certain

elements are added to the model. We again distinguish between decision requirements metrics

and decision table metrics. The overview for the DRD metrics is given in a tabular form in

Tables 5. We look at the additions of the following elements to the model: decision nodes,450

input data nodes, business knowledge model nodes, knowledge source nodes, information

requirement arcs, knowledge requirement arcs, and authority requirement arcs. We use a

” + ” to indicate an increasing metric value and a ” − ” to indicate a decreasing metric

value. Likewise, a ”(+)” is depicted for possibly increasing values and a ”(−)” for possibly

decreasing values.455

DRD Metric D ID BKM KS IR KR AR

NOD +

NOE + + + + + + +

NOBE + + +

NODIR + +

Dens + + +

TNDO +

NCD (+)

DSM (+) (+) (+) (+) (+) (+) (+)

PSM (+) (+) (+) (+) (+) (+) (+)

Seq + + + + + + +

DNS + +

Diam (+) (+) (+) (+) (+) (+) (+)

LP (+) (+) (+) (+) (+) (+) (+)

AVD - - - - + + +

CNC + + + + + + +

KC (+) (+) (+) (+) (+) (+) (+)

DND (+) (+)

CC (-) (-) (-) (-) + + +

IC + +

Table 5: Overview of DRD metric evolution. D = Decision element; ID = Input Data element; BKM =
Business Knowledge Model; KS = Knowledge Source; IR = Information Requirement; KR = Knowledge
Requirement; AR = Authority Requirement.
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Table 6 provides an overview of Decision Table metric evolution. The symbols for (pos-

sibly) increasing and decreasing metric values are the same as in Table 5. For decision table

metrics we consider the addition of input variables, output variables, decision rules, as well

as adding or changing hit policies.

DT Metric IV OV DR HP

ANPI (+) (+)

ANPO + (+)

ANVC + (+)

HPU (+)

TNR (+) (+) +

TNIV +

SS + + +

Table 6: Overview of Decision Table metric evolution. IV = Input Variable; OV = Output Variable; DR =
Decision Rule; HP = Hit Policy.

6. Empirical Evaluation460

An exploratory survey was held during the master’s course of Knowledge Management

and Business Intelligence at KU Leuven. Students were presented with 11 DRD models and

11 decision tables respectively, ranging from simple to complex in an arbitrary order. The

students were asked to indicate on a visual analogue scale how complex they perceived each

of the DRD models or tables to be. In total 22 students with previous knowledge about465

DMN took part in the DRD survey, while 18 students with previous knowledge about DMN

took part in the decision tables survey. The tested DRD models are provided in Appendix

A, while the tested decision tables are given in Appendix B. The full questionnaire provided

to the students is available in Appendix D.

To detect how well the proposed metrics describe the perceived complexity as indicated470

by the survey, the metric values were compared to the survey results. This was done by
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calculating the correlation and the sum of squared differences (SSD) of the metric values for

respectively all the DRD models and tables, and the survey averages. In order to calculate

a valid sum of squared differences, the metric values were first scaled to a range from zero

to ten, i.e. reflecting the complexity range of the visual analogue scale of the survey.475
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Figure 3: Decision requirement diagram metrics chart.

Results for the DRD metrics are presented in Table 7 and Figure 3, while Table 8 and

Figure 4 represent the results for the decision table metrics. For all the 11 tested DRD

models and decision tables, the metric value of all the proposed metrics are calculated and

included in the respective tables. Higher (lower) values of the metrics represent a higher

(lower) degree of complexity. The final two rows of the table give the average degree of480

complexity as indicated by the students in the survey on the visual analogue scale (on a
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scale of 10) and the standard deviation of the complexity as indicated in the survey. The

final two columns in Table 7 and 8 depict the correlation and the sum of squared differences

(SSD) of the metric values and the survey results respectively. For an easier interpretation

and comparison, the SSD values and correlations are depicted in the form of charts as well:485

Figure 3 gives an overview for DRD metrics, while Figure 4 provides a summary for decision

table metrics.
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Figure 4: Decision table metrics chart.

By examining the sum of squared differences in Table 7 and Figure 3 we can conclude

that basic metrics such as Number of Elements (NOE), Number of Decisions (NOD), Num-

ber of Complex Decisions (NCD), and Total Number of Data Objects (TNDO) measure490

the perceived complexity quite well, indicated by the low values in SSD. Additionally, the
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Cyclomatic Complexity (CC) also showcases a low SSD, indicating that the popular CC

metric might be a good measure for DRD model complexity as well. Also, Durfee Square

and Perfect Square metrics prove to fulfil their purpose, as they display both low SSD values

and high correlations between the metric values and the empirical assessment.495

For the table metrics, the results in Table 8 and Figure 4 are obvious. Hit Policy Usage

(HPU) and Total Number of Input Variables (TNIV) both have high correlations (respec-

tively 0,57 and 0,79) and low sum of squared differences (respectively 29,26 and 48,00) with

the survey results. This means that it is advised to consider these metrics while construct-

ing decision tables. Moreover, we conducted the analysis again for the product of HPU500

and TNIV and the results improved even further with a correlation above 0,9 and a sum of

squared differences around 30. Unique table metrics with a relatively low number of input

variables prove best practice.

7. Discussion and Future Work

We have proposed complexity metrics for the DMN standard, both at the requirements505

level and the logic level, under the assumption that complexity is a measure of the cognitive

effort of understanding. This perceived complexity was tested in surveys as well and the

empirical results were compared to the theoretical values of the proposed complexity metrics.

Note that the results are only indicative as the statistical significance was not tested yet and

that the conclusion validity is still to be improved with a larger sample of survey participants.510

Also note that a vast array of metrics was proposed and that some of the metrics showcased

intercorrelation, e.g. AVD and CNC are perfectly correlated, indicating that certain metrics

measure the same phenomenon, hence making the metrics redundant. The metric correlation
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matrix is given in Appendix C. The matrix showcases, for instance, that Density and NOD

have a high negative correlation (−0.70). This makes sense, since a bigger model generally515

means more decision nodes. As a consequence, it can be concluded that Dens is expected to

decrease when NOD increases.

Next to the individual metrics for the DRDs and the decision tables, in future work

we will look into combining DRD and decision table metrics into aggregated and holisitc

complexity metrics, thus denoting the complexity of the entire DMN decision model. To520

do so, the focus has to mainly be set on negatively correlating table and DRD metrics.

This is due to the fact that there is a trade off between DRD complexity and decision table

complexity. A decision can be modelled in a single encompassing decision table containing all

the logic. This however results in a high decision table complexity and a low DRD complexity,

since the DRD only contains one decision node representing the holistic decision table. The525

holistic decision table can be decomposed into a number of smaller and interconnected tables

containing parts of the decision logic. This decreases the complexity of the individual decision

tables. However, the complexity of the decision requirements diagram is likely to increase,

because the top-level decision is decomposed into multiple sub-decisions, thus introducing

additional decision nodes and information requirements into the DRD model. Note that530

for instance ANPI and Density showcase a negative correlation in the correlation matrix in

Table C.9, while Density and TNIV showcase a strong negative correlation (−0.62). Hence,

the combination of Density and TNIV could be a very interesting one since one of them is

a DRD metric and the other is a table metric and they are negatively correlate.

In addition to this theoretical metric discourse on DMN complexity, in future work we will535

look into additional empirical validation for the proposed metrics through additional surveys.
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Additionally, the challenge of aggregating DRD and decision table metric provides additional

opportunities for future research. Finally, inquiries into the complexity of integrated process

and decision models will be conducted, by combining and integrating complexity metrics of

DMN decision models and BPMN process models. That way, it can be investigated how540

the separation of process and decision concerns influences the complexity of the process and

decision models respectively, as well as the complexity of the integrated process-decision

model as a whole.

8. Conclusion

This paper provides a discussion on complexity metrics for individual DMN decision mod-545

els. For the decision requirements level of the DMN standard, 19 complexity metrics were

proposed, while 7 complexity metrics were put forward for the decision logic level. Further-

more, the evolution of the metrics was discussed and a survey was conducted to empirically

evaluate the proposed complexity metrics. Results revealed that the simple metrics were

suitable for capturing DRD complexity (e.g. Number of Elements (NOE), Number of De-550

cisions (NOD), Number of Complex Decisions (NCD), and Total Number of Data Objects

(TNDO)), while the Durfee Square Metric (DSM) and the Perfect Square Metric (PSM)

prove to be the most suitable, as they display both low sum of squared differences values

and high correlations between the metric values and the empirical assessment in the sur-

vey. For DMN decision tables, the Hit Policy Usage (HPU) and the Total Number of Input555

Variables (TNIV) were evaluated as suitable for measuring DMN decision table complex-

ity. Additionally, an agenda for future inquiry into DMN decision model complexity was

suggested. The emphasis was put on combining the metrics of both the logic level and the
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requirements level into aggregate metrics for the DMN model as a whole. Furthermore, the

need for additional empirical validation for all type of metrics was emphasised. Finally, the560

complexity of integrated process and decision models needs to be assessed, by combining

and integrating complexity metrics of DMN decision models and BPMN process models.
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Figure A.5: DMN DRD Model 1.

Appendix A. DMN Decision Requirements Models

Appendix B. DMN Decision Table Models660

Appendix C. Correlation Matrix of All Metrics

Appendix D. Survey Questionnaire

40



Figure A.6: DMN DRD Model 2.

Figure A.7: DMN DRD Model 3.
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Figure A.8: DMN DRD Model 4.
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Figure A.9: DMN DRD Model 5.
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Figure A.10: DMN DRD Model 6.

Figure A.11: DMN DRD Model 7.
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Figure A.12: DMN DRD Model 8.

Figure A.13: DMN DRD Model 9.
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Figure A.14: DMN DRD Model 10.

Figure A.15: DMN DRD Model 11.
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Figure B.16: DMN Table 1.

Figure B.17: DMN Table 2.
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Figure B.18: DMN Table 3.

Figure B.19: DMN Table 4.

Figure B.20: DMN Table 5.
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Figure B.21: DMN Table 6.

Figure B.22: DMN Table 7.
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Figure B.23: DMN Table 8.

Figure B.24: DMN Table 9.

Figure B.25: DMN Table 10.

50



Figure B.26: DMN Table 11.
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Figure D.27: Survey.
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In this survey, we will ask you to assess the complexity of 11 DRD models and decision tables. Please mark an ‘X’ on the 
visual scale line, indicating how complex you think each model is, ranging from not complex at all to very complex. Also, 
answer the accompanying questions (to make sure you properly understand the models and do not answer randomly).  
When you want to change your answer, make sure to circle your final ‘X’. Thank you. 
 
Please also fill in/circle your answer to following questions: 
R-number: ……………………………………………………………… 

Highest achieved diploma:    Bachelor  /   Master   /    MaNaMa   /   Other: …………………….………………….……………………………………………………………………….. 

Study field of highest achieved diploma (e.g. Business Engineering, Statistics,…): …………………….………………….…………………………………………………………. 

Current study program: …………………………………………………………………………………………………….………………….………………….………………….…………….………………….…………………………………… 

I have followed a course that covered/discussed DMN in the past:    Yes   /   No 

 

Model 1: How many inputs does “IsLoanAffordable” require?  ……………………………….………………….………………….………………….……… 
 
 

Model 2:  Is the budget taken into account by “Room” ………….………………….…………….………………….…………………………………………………... 
 
 

Model 3: Which decisions (if any) are affected by “Requested Product”? …..………………….………………….………….… 
 
 
 
Model 4: How many input data elements does “Physical Health Score” use in total? ...................................... 
 
 
 
Model 5:  What input data is directly necessary to make the decision “BMI Level”?  ……….............................. 
 
 
 
Model 6: How many input data elements affect “Routing”?  ...................................................................................................... 
 
 
 
Model 7: Can we make the “Routing Decision” with “Bureau Strategy Business Logic”? …….…………………………….. 
 
 
 
Model 8: Which decisions are not affected by applicant data? ……………………………………………………………………………….………………… 
 
 
 
Model 9: Can we make the “Drinks” decision if we don’t know the season? ………….………………….…….……………….… 
 
 
 
Model 10: How many input data elements affect “Residency”? ……………………………………………….…………….………………….……………… 

 

 
Model 11: Is “Location” in any way affected by “Food”? …………………………………………………………………………….………………….… 
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Table 1: What output is generated by following data? …………………………………………………………………………………………………….…………………. 
Season = Summer; Guests = 20; Sleeping facilities = F; Children = T 
 
 

Table 2: What output is generated by following data?  …………………………………………………………………………………………………….…………………. 
Eligibility = Eligible; Bureau Call Type = MINI 
 
 

Table 3: What output is generated by following data?  …………………………………………………………………………………………………….…………………. 
Sex = F; Coordination = P; Agility = P; Strength = F; Speed = P; Stamina = F 
 
 

Table 4: What output is generated by following data?  …………………………………………………………………………………………………….…………………. 
BMI = 20; Sex = Female 
 
 
 

Table 5: What output is generated by following data?  …………………………………………………………………………………………………….…………………. 
Pre-bureau Risk Category = - ; Pre-bureau Affordability = FALSE; Age = 16 
 
 
 

Table 6: What output is generated by following data?  …………………………………………………………………………………………………….…………………. 
Affordability = TRUE; Bankrupt = FALSE; Risk Category = HIGH; Credit Score = 650 
 
 
 

Table 7: What output is generated by following data?  …………………………………………………………………………………………………….…………………. 
Age = 22; isMarried = TRUE; employmentStatus = Student 
 
 

Table 8: What output is generated by following data?  …………………………………………………………………………………………………….…………………. 
Residency = Iglo; Comfort = F; Adults = 2; Children = 2 
 
 
 

Table 9: What output is generated by following data?  …………………………………………………………………………………………………….…………………. 
Eye = F; Hearing = P 
 
 
 

Table 10:  What output is generated by following data?  …………………………………………………………………………………………………….…………………. 
Season = Summer 
 

 

Table 11:  What output is generated by following data?  …………………………………………………………………………………………………….…………………. 
Total costs = 700; Budget = 250 
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