-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
161 lines (134 loc) · 5.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# -*- coding: utf-8 -*-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.ollama import Ollama
from llama_index.core import QueryBundle
from llama_index.core.retrievers import BaseRetriever
from typing import Any, List, Optional
from llama_index.core.schema import NodeWithScore
from llama_index.vector_stores.typesense import TypesenseVectorStore
from llama_index.core.vector_stores import VectorStoreQuery
from typesense import Client as TypesenseClient
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.schema import TextNode
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core import SimpleDirectoryReader
class VectorDBRetriever(BaseRetriever):
"""Retriever over a typesense vector store."""
def __init__(
self,
vector_store: TypesenseVectorStore,
embed_model: Any,
query_mode: str = "default",
similarity_top_k: int = 2,
) -> None:
"""Init params."""
self._vector_store = vector_store
self._embed_model = embed_model
self._query_mode = query_mode
self._similarity_top_k = similarity_top_k
super().__init__()
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
"""Retrieve."""
query_embedding = self._embed_model.get_query_embedding(
query_bundle.query_str)
vector_store_query = VectorStoreQuery(
query_embedding=query_embedding,
similarity_top_k=self._similarity_top_k,
mode=self._query_mode,
)
query_result = self._vector_store.query(vector_store_query)
nodes_with_scores = []
for index, node in enumerate(query_result.nodes):
score: Optional[float] = None
if query_result.similarities is not None:
score = query_result.similarities[index]
nodes_with_scores.append(NodeWithScore(node=node, score=score))
return nodes_with_scores
class RAG:
def __init__(self,
embed_model_name: str = "BAAI/bge-small-en-v1.5",
llm_model: str = 'llama3.2:3b'):
self.embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
self.llm = Ollama(
model=llm_model,
temperature=0.1,
request_timeout=60.0,
# max_new_tokens=256,
# llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
# context_window=3900,
# kwargs to pass to __call__()
# generate_kwargs={},
# kwargs to pass to __init__()
# set to at least 1 to use GPU
# model_kwargs={"n_gpu_layers": 1},
# verbose=True,
)
self.typesense_client = TypesenseClient({
"api_key":
"xyz",
"nodes": [{
"host": "localhost",
"port": "8108",
"protocol": "http"
}],
"connection_timeout_seconds":
2,
})
self.vector_store = TypesenseVectorStore(
client=self.typesense_client,
collection_name='lightningdocs',
text_key='textchunks')
self.text_parser = SentenceSplitter(
chunk_size=1024,
separator=" ",
)
self.retriever = VectorDBRetriever(vector_store=self.vector_store,
embed_model=self.embed_model,
query_mode="default",
similarity_top_k=2)
self.query_engine = RetrieverQueryEngine.from_args(
retriever=self.retriever, llm=self.llm)
def load_data(self, docs_dir: str):
reader = SimpleDirectoryReader(input_dir=docs_dir,
required_exts=[
'.rst',
],
recursive=True)
documents = reader.load_data()
self.add_documents(documents)
def add_documents(self, documents):
text_chunks = []
doc_idxs = []
for doc_idx, doc in enumerate(documents):
cur_text_chunks = self.text_parser.split_text(doc.text)
text_chunks.extend(cur_text_chunks)
doc_idxs.extend([doc_idx] * len(cur_text_chunks))
nodes = []
for idx, text_chunk in enumerate(text_chunks):
node = TextNode(text=text_chunk, )
src_doc = documents[doc_idxs[idx]]
node.metadata = src_doc.metadata
nodes.append(node)
for node in nodes:
node_embedding = self.embed_model.get_text_embedding(
node.get_content(metadata_mode="all"))
node.embedding = node_embedding
self.vector_store.add(nodes)
def query(self, query_str: str):
response = self.query_engine.query(query_str)
return response
if __name__ == "__main__":
rag = RAG(embed_model_name="BAAI/bge-small-en-v1.5",
llm_model='llama3.2:3b')
rag.load_data(docs_dir="./data/pytorch-lightning-release-stable/docs/")
query_strs = [
"What is PyTorch Lightning?",
"How to train the model in Pytorch Lightning?",
"How to deploy a model?"
]
for query_str in query_strs:
print(f'Question: {query_str}')
response = rag.query(query_str=query_str)
print(f'Answer: {str(response)}')
print()
# print(response.source_nodes[0].get_content())