diff --git a/doc/source/cluster/kubernetes/examples/ml-example.md b/doc/source/cluster/kubernetes/examples/ml-example.md index 458987571ef2..b3575954cdaf 100644 --- a/doc/source/cluster/kubernetes/examples/ml-example.md +++ b/doc/source/cluster/kubernetes/examples/ml-example.md @@ -12,7 +12,7 @@ In this guide, we show you how to run a sample Ray machine learning workload on Kubernetes infrastructure. We will run Ray's {ref}`XGBoost training benchmark ` with a 100 gigabyte training set. -To learn more about using Ray's XGBoostTrainer, check out {ref}`the XGBoostTrainer documentation `. +To learn more about using Ray's XGBoostTrainer, check out {ref}`the XGBoostTrainer documentation `. ## Kubernetes infrastructure setup on GCP @@ -179,7 +179,7 @@ you might not match {ref}`the numbers quoted in the benchmark docs ` for details. +Refer to the {ref}`the XGBoostTrainer documentation ` for details. ```{admonition} Scale-down If autoscaling is enabled, Ray worker pods will scale down after 60 seconds. diff --git a/doc/source/cluster/vms/examples/ml-example.md b/doc/source/cluster/vms/examples/ml-example.md index 3389ca272d77..fdac20973889 100644 --- a/doc/source/cluster/vms/examples/ml-example.md +++ b/doc/source/cluster/vms/examples/ml-example.md @@ -12,7 +12,7 @@ In this guide, we show you how to run a sample Ray machine learning workload on AWS. The similar steps can be used to deploy on GCP or Azure as well. We will run Ray's {ref}`XGBoost training benchmark ` with a 100 gigabyte training set. -To learn more about using Ray's XGBoostTrainer, check out {ref}`the XGBoostTrainer documentation `. +To learn more about using Ray's XGBoostTrainer, check out {ref}`the XGBoostTrainer documentation `. ## VM cluster setup @@ -119,7 +119,7 @@ you might not match {ref}`the numbers quoted in the benchmark docs ` for details. +Refer to the {ref}`XGBoostTrainer documentation ` for details. ```{admonition} Scale-down If autoscaling is enabled, Ray worker nodes will scale down after the specified idle timeout.