-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathplots_anova.py
130 lines (105 loc) · 4.58 KB
/
plots_anova.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import argparse
import matplotlib.pyplot as plt
import seaborn
import pandas as pd
import numpy as np
import pystan
import scipy
import sys
import bayesian_anova
parser = argparse.ArgumentParser(description='ANOVA plot generator')
parser.add_argument('--dataset', dest='dataset', action='store',
choices=['mnist','svhn','cifar10'],
help='Dataset', required=True)
args = parser.parse_args(sys.argv[1:])
dataset = args.dataset
if dataset == 'mnist':
nn_model = 'mlp'
experiments = ['mlp', 'mlp-dropout', 'mlp-poor-bayesian']#, 'mlp-bayesian']
else:
nn_model = 'convolutional'
experiments = ['convolutional', 'convolutional-dropout', 'convolutional-poor-bayesian']
cols = ['experiment_name',
'test_acc',
'train_time',
'entropy__auc',
'entropy_expectation__auc',
'classifier__auc']
dfs = []
for exp in experiments:
df_with = pd.read_csv(dataset+'_results/'+exp+'_with_unknown.csv')
df_with_results = df_with[cols].set_index('experiment_name')
df_without = pd.read_csv(dataset+'_results/'+exp+'_out_unknown.csv')
df_without_results = df_without[cols].set_index('experiment_name')
dfs.append([exp, df_with_results, df_without_results])
results_cols = ['experiment',
'in_test_acc', 'out_test_acc',
'in_train_time', 'out_train_time',
'in_entropy_auc', 'out_entropy_auc',
'in_entropy_expectation_auc', 'out_entropy_expectation_auc',
'in_classifier_auc', 'out_classifier_auc']
dfs_results = []
for exp, df_with, df_without in dfs:
results = pd.DataFrame(columns=results_cols)
for (in_key, *in_row), (out_key, *out_row) in zip(df_with.itertuples(), df_without.itertuples()):
assert in_key == out_key
results.loc[len(results)] = [
str(in_key),
in_row[0], out_row[0],
in_row[1], out_row[1],
in_row[2], out_row[2],
in_row[3], out_row[3],
in_row[4], out_row[4],
]
dfs_results.append([exp, results])
final_results_cols = ['experiment']
for c in results_cols[1:]:
for exp, _ in dfs_results:
final_results_cols.append(exp+'_'+c)
final_results = pd.DataFrame(columns=final_results_cols)
for key_row in zip(*[df.itertuples() for exp, df in dfs_results]):
for i in range(1, len(key_row)):
_, *prev_row = key_row[i-1]
_, *row = key_row[i]
assert prev_row[0] == row[0]
_, *row = key_row[0]
new_row = [row[0]]
for c in range(1, len(results_cols)):
for _, *row in key_row:
new_row.append(row[c])
final_results.loc[len(final_results)] = new_row
model = pystan.StanModel(model_code=bayesian_anova.one_way_code)
out_acc = [nn_model+'_out_classifier_auc',
nn_model+'-dropout_out_classifier_auc',
nn_model+'-poor-bayesian_out_classifier_auc']
y_out = final_results[out_acc].values
in_acc = [nn_model+'_in_classifier_auc',
nn_model+'-dropout_in_classifier_auc',
nn_model+'-poor-bayesian_in_classifier_auc']
y_in = final_results[in_acc].values
model = pystan.StanModel(model_code=bayesian_anova.two_way_code)
N, K = y_out.shape
data = {'K': K, 'N': N, 'y_in': y_in, 'y_out': y_out}
fit = model.sampling(data=data, iter=100000, warmup = 10000, chains=4, thin=5)
bayesian_anova.show_results(fit)
trace = fit.extract()
deterministic = trace['theta'][:,0]
dropout = trace['theta'][:,1]
poor_bayesian = trace['theta'][:,2]
in_mean = trace['mu_in']
out_mean = trace['mu_out']
traces = [out_mean, in_mean, deterministic, dropout, poor_bayesian]
traces_name = ['Blind Mean', 'Calibrated Mean', 'ML effect', 'BD effect', 'OSBA effect']
fig_hist, figs_effects = bayesian_anova.plot_traces(traces, traces_name, show=False)
fig_hist.savefig(dataset+'_results/images/hist.png')
for name, fig in figs_effects:
name = name.lower().replace(' ', '_')
fig.savefig(dataset+'_results/images/'+name+'.png')
fig_diff_drop_ml = bayesian_anova.effect_difference(dropout, deterministic, 'BD', 'ML', show=False)
fig_diff_os_ml = bayesian_anova.effect_difference(poor_bayesian, deterministic, 'OSBA', 'ML', show=False)
fig_diff_os_drop = bayesian_anova.effect_difference(poor_bayesian, dropout, 'OSBA', 'BD', show=False)
fig_diff_iou_io = bayesian_anova.effect_difference(in_mean, out_mean, 'Calibrated', 'Blind', show=False)
fig_diff_drop_ml.savefig(dataset+'_results/images/diff_drop_ml.png')
fig_diff_os_ml.savefig(dataset+'_results/images/diff_os_ml.png')
fig_diff_os_drop.savefig(dataset+'_results/images/diff_os_drop.png')
fig_diff_iou_io.savefig(dataset+'_results/images/diff_iou_io.png')