-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
92 lines (69 loc) · 3.67 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import tensorflow as tf
from tensorflow.contrib.layers import flatten
import numpy as np
import pickle
import matplotlib.image as mpimg
class IllegalArgumentError(ValueError):
pass
class BaseNet:
def __init__(self,num_default_boxes,num_classes):
self.num_default_boxes = num_default_boxes
self.num_classes = num_classes
pass
def conv_layer_optional_pooling(self, x_tensor,n_outputs,n_ksize,n_strides,name,phase,
padding_type="VALID",pool_ksize=None,pool_strides=None,pool_name=None):
# Convolution layer with Relu
"""
x_tensor : input tensor
n_outputs: number of outputs of the convolutional layer
n_ksize: kernel size 2-d tuple
n_strides: 2-d tuple for convlution
padding_type: Type of padding. default is "SAME"
pool_ksize: kernel size 2-d tuple for max pool
pool_strides: stride 2-d tuple for max pool
returns A tensor that is hte output of convolution, relu & max-pooling (optional)
"""
# check for dumb input errors
# if (len(n_ksize) != 2) or (len(n_strides) !=2) or \
# (pool_ksize!=None and len(pool_ksize)!=2) or (pool_strides!=None and len(pool_strides!=2)):
# raise IllegalArgumentError
num_channels = int(x_tensor.shape[-1])
filter_weight = tf.Variable(tf.truncated_normal(list(n_ksize)+[num_channels,n_outputs],mean=0,stddev=0.001))
filter_bias = tf.Variable(tf.zeros(n_outputs))
conv_layer = tf.nn.conv2d(x_tensor,filter_weight,[1]+list(n_strides)+[1],padding_type,name=name)
conv_layer = tf.nn.bias_add(conv_layer,filter_bias)
# Add batch normalization
h1 = tf.contrib.layers.batch_norm(conv_layer,center=True, scale=True,
is_training = phase)
conv_layer = tf.nn.relu(h1)
print(name,conv_layer.shape)
if pool_ksize!= None and pool_strides !=None:
pooled = tf.nn.max_pool(conv_layer,
ksize=[1] + list(pool_ksize) + [1],
strides = [1] + list(pool_strides) + [1],
padding='SAME',name=pool_name)
print("After pool ",pool_name,pooled.shape)
return pooled
return conv_layer
def flatten(self, x_tensor):
batch_size = x_tensor.shape[0]
mult = 1
for a in range(1,len(x_tensor.shape)):
mult = mult * int(x_tensor.shape[a])
return tf.reshape(x_tensor,[-1,mult])
def fully_conn(self, x_tensor,num_outputs):
num_inputs = int(x_tensor.shape[1])
weight= tf.Variable(tf.random_normal([num_inputs,num_outputs],mean=0,stddev=0.001))
bias = tf.Variable(tf.zeros(shape=num_outputs))
layer = tf.add(tf.matmul(x_tensor,weight),bias)
layer = tf.nn.relu(layer)
return layer
def convolve_and_collect(self,fmap,name,y_box_coords,y_class,phase):
# Apply 2 convolutions and get predictions for coordinates and classes and store them
# Get both of these guys and convolve
b = self.conv_layer_optional_pooling(fmap,4*self.num_default_boxes,(3,3),(1,1),name+"box_coords",phase,padding_type="SAME")
print(" =====> ",name+"box_coords",self.flatten(b))
y_box_coords.insert(0,flatten(b))
c = self.conv_layer_optional_pooling(fmap,self.num_classes*self.num_default_boxes,(3,3),(1,1),name+"class",phase,padding_type="SAME")
print(" =====> ",name+"class",self.flatten(c))
y_class.insert(0,flatten(c))