-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathrun.sh
executable file
·264 lines (227 loc) · 10.3 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/bin/bash
set -e
set -u
set -o pipefail
function xrun () {
set -x
$@
set +x
}
script_dir=$(cd $(dirname ${BASH_SOURCE:-$0}); pwd)
COMMON_ROOT=../../../recipes/common
. $COMMON_ROOT/yaml_parser.sh || exit 1;
eval $(parse_yaml "./config.yaml" "")
train_set="train"
dev_set="dev"
eval_set="eval"
datasets=($train_set $dev_set $eval_set)
testsets=($eval_set)
stage=0
stop_stage=0
. $COMMON_ROOT/parse_options.sh || exit 1;
dumpdir=dump
dump_org_dir=$dumpdir/jvs001-100_sr${sample_rate}/org
dump_norm_dir=$dumpdir/jvs001-100_sr${sample_rate}/norm
vocoder_model=$(basename $parallel_wavegan_config)
vocoder_model=${vocoder_model%.*}
# exp name
if [ -z ${tag:=} ]; then
expname=jvs001-100_sr${sample_rate}
else
expname=jvs001-100_sr${sample_rate}_${tag}
fi
expdir=exp/$expname
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
echo "stage -1: Data download"
mkdir -p downloads
echo "Please download data manually!"
echo "JVS corpus: https://sites.google.com/site/shinnosuketakamichi/research-topics/jvs_corpus"
echo "After downloading the corpus, please run audio.bash from https://github.com/r9y9/jvs_r9y9"
echo "to remove some wrong/missing-label utterances."
echo "Please make sure to have JVS corpus in 'db_root' in config.yaml."
exit 1
fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
echo "stage 0: Data preparation"
echo "train/dev/eval split"
# NOTE: For, jvs006, jvs028, jvs037 (??), label files are missing.
# these speakers are exlucded.
for spk in $(cat data/spks); do
echo $spk
mkdir -p data/$spk/parallel100/
find $db_root/$spk/parallel100/wav24kHz16bit/ -type f -name "*.wav" -exec basename {} \; | sed -e 's/.wav//' | sort > data/$spk/parallel100/utt_list.txt
head -n 90 data/$spk/parallel100/utt_list.txt > data/$spk/parallel100/train.list
tail -10 data/$spk/parallel100/utt_list.txt > data/$spk/parallel100/deveval.list
head -n 5 data/$spk/parallel100/deveval.list > data/$spk/parallel100/dev.list
tail -n 5 data/$spk/parallel100/deveval.list > data/$spk/parallel100/eval.list
rm -f data/$spk/parallel100/deveval.list
mkdir -p data/$spk/nonpara30/
find $db_root/$spk/nonpara30/wav24kHz16bit/ -type f -name "*.wav" -exec basename {} \; | sed -e 's/.wav//' | sort > data/$spk/nonpara30/utt_list.txt
head -n 28 data/$spk/nonpara30/utt_list.txt > data/$spk/nonpara30/train.list
tail -2 data/$spk/nonpara30/utt_list.txt > data/$spk/nonpara30/deveval.list
head -n 1 data/$spk/nonpara30/deveval.list > data/$spk/nonpara30/dev.list
tail -n 1 data/$spk/nonpara30/deveval.list > data/$spk/nonpara30/eval.list
rm -f data/$spk/nonpara30/deveval.list
rm -f data/$spk/train.list data/$spk/dev.list data/$spk/eval.list
for typ in parallel100 nonpara30; do
cat data/$spk/$typ/train.list >> data/$spk/train.list
cat data/$spk/$typ/dev.list >> data/$spk/dev.list
cat data/$spk/$typ/eval.list >> data/$spk/eval.list
done
done
# すべてまとめる
rm -f data/train.list data/dev.list data/eval.list
for spk in $(cat data/spks); do
cat data/$spk/train.list >> data/train.list
cat data/$spk/dev.list >> data/dev.list
cat data/$spk/eval.list >> data/eval.list
done
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
echo "stage 1: Feature generation"
for spk in $(cat data/spks); do
spk_id=$(cat data/spk2id | grep $spk | cut -f 2 -d":")
echo $spk $spk_id
for typ in parallel100 nonpara30; do
for s in ${datasets[@]}; do
xrun python preprocess.py data/$spk/$typ/$s.list $spk_id \
$db_root/$spk/$typ/wav24kHz16bit --sample_rate $sample_rate \
$db_root/${spk}/$typ/lab/ful/ $dump_org_dir/$s --n_jobs $n_jobs
done
done
done
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
echo "stage 2: feature normalization"
if [ ${finetuning} = "true" ]; then
# NOTE: JSUTコーパスで計算した統計量をベースに利用する
extra_args="--external_scaler $PWD/../../jsut/tacotron2_pwg/dump/jsut_sr${sample_rate}/org/out_tacotron_scaler.joblib"
else
extra_args=""
fi
# NOTE: JVSコーパスは話者毎のデータ量が少ないので、JSUTコーパスで計算した統計量をベースに利用する
xrun python $COMMON_ROOT/fit_scaler.py data/train.list \
$dump_org_dir/$train_set/out_tacotron/ \
$dump_org_dir/out_tacotron_scaler.joblib $extra_args
mkdir -p $dump_norm_dir
cp -v $dump_org_dir/*.joblib $dump_norm_dir/
for s in ${datasets[@]}; do
xrun python $COMMON_ROOT/preprocess_normalize.py data/$s.list \
$dump_org_dir/out_tacotron_scaler.joblib \
$dump_org_dir/$s/out_tacotron/ \
$dump_norm_dir/$s/out_tacotron/ --n_jobs $n_jobs
# 波形データは手動でコピー
find $dump_org_dir/$s/out_tacotron/ -name "*-wave.npy" -exec cp "{}" $dump_norm_dir/$s/out_tacotron \;
# 韻律記号付き音素列は手動でコピー
rm -rf $dump_norm_dir/$s/in_tacotron
cp -r $dump_org_dir/$s/in_tacotron $dump_norm_dir/$s/
done
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "stage 3: Training Tacotron"
if [ ${finetuning} = "true" ] && [ -z ${pretrained_acoustic_checkpoint} ]; then
pretrained_acoustic_checkpoint=$PWD/../../jsut/tacotron2_pwg/exp/jsut_sr${sample_rate}/${acoustic_model}/${acoustic_eval_checkpoint}
if [ ! -e $pretrained_acoustic_checkpoint ]; then
echo "Please first train a acoustic model for JSUT corpus!"
echo "Expected model path: $pretrained_acoustic_checkpoint"
exit 1
fi
fi
xrun python train_tacotron.py model=$acoustic_model tqdm=$tqdm \
data.train.utt_list=data/train.list \
data.train.in_dir=$dump_norm_dir/$train_set/in_tacotron/ \
data.train.out_dir=$dump_norm_dir/$train_set/out_tacotron/ \
data.dev.utt_list=data/dev.list \
data.dev.in_dir=$dump_norm_dir/$dev_set/in_tacotron/ \
data.dev.out_dir=$dump_norm_dir/$dev_set/out_tacotron/ \
train.out_dir=$expdir/${acoustic_model} \
train.log_dir=tensorboard/${expname}_${acoustic_model} \
train.max_train_steps=$tacotron_train_max_train_steps \
data.batch_size=$tacotron_data_batch_size \
cudnn.benchmark=$cudnn_benchmark cudnn.deterministic=$cudnn_deterministic \
train.pretrained.checkpoint=$pretrained_acoustic_checkpoint
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "stage 4: Training Parallel WaveGAN"
if [ ${finetuning} = "true" ] && [ -z ${pretrained_vocoder_checkpoint} ]; then
voc_expdir=$PWD/../../jsut/tacotron2_pwg/exp/jsut_sr${sample_rate}/${vocoder_model}
pretrained_vocoder_checkpoint="$(ls -dt "$voc_expdir"/*.pkl | head -1 || true)"
if [ ! -e $pretrained_vocoder_checkpoint ]; then
echo "Please first train a PWG model for JSUT corpus!"
echo "Expected model path: $pretrained_vocoder_checkpoint"
exit 1
fi
extra_args="--resume $pretrained_vocoder_checkpoint"
else
extra_args=""
fi
xrun parallel-wavegan-train --config $parallel_wavegan_config \
--train-dumpdir $dump_norm_dir/$train_set/out_tacotron \
--dev-dumpdir $dump_norm_dir/$dev_set/out_tacotron/ \
--outdir $expdir/$vocoder_model $extra_args
fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
echo "stage 5: Synthesis waveforms by parallel_wavegan"
if [ -z "${vocoder_eval_checkpoint}" ]; then
vocoder_eval_checkpoint="$(ls -dt "${expdir}/${vocoder_model}"/*.pkl | head -1 || true)"
fi
outdir="${expdir}/$vocoder_model/wav/$(basename "${vocoder_eval_checkpoint}" .pkl)"
for s in ${testsets[@]}; do
xrun parallel-wavegan-decode --dumpdir $dump_norm_dir/$s/out_tacotron/ \
--checkpoint $vocoder_eval_checkpoint \
--outdir $outdir
done
fi
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
echo "stage 6: Generate GTA features"
for s in ${datasets[@]}; do
xrun python generate_gta.py utt_list=./data/$s.list tqdm=$tqdm \
in_dir=$dump_norm_dir/$s/in_tacotron \
out_dir=$dump_norm_dir/$s/out_tacotron \
gta_dir=$expdir/gta_${acoustic_model}/$s \
sample_rate=$sample_rate \
acoustic.checkpoint=$expdir/${acoustic_model}/$acoustic_eval_checkpoint \
acoustic.out_scaler_path=$dump_norm_dir/out_tacotron_scaler.joblib \
acoustic.model_yaml=$expdir/${acoustic_model}/model.yaml
done
fi
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
echo "stage 7: Training Parallel WaveGAN with GTA features"
if [ ! -z ${pretrained_vocoder_checkpoint} ]; then
extra_args="--resume $pretrained_vocoder_checkpoint"
else
extra_args=""
fi
xrun parallel-wavegan-train --config $parallel_wavegan_config \
--train-dumpdir $expdir/gta_${acoustic_model}/$train_set \
--dev-dumpdir $expdir/gta_${acoustic_model}/$dev_set \
--outdir $expdir/${vocoder_model} $extra_args
fi
if [ ${stage} -le 99 ] && [ ${stop_stage} -ge 99 ]; then
echo "Pack models for TTS"
dst_dir=tts_models/${expname}_${acoustic_model}_${vocoder_model}
mkdir -p $dst_dir
# global config
cat > ${dst_dir}/config.yaml <<EOL
sample_rate: ${sample_rate}
acoustic_model: ${acoustic_model}
vocoder_model: ${vocoder_model}
EOL
# Acoustic model
python $COMMON_ROOT/clean_checkpoint_state.py $expdir/${acoustic_model}/$acoustic_eval_checkpoint \
$dst_dir/acoustic_model.pth
cp $expdir/${acoustic_model}/model.yaml $dst_dir/acoustic_model.yaml
# parallel wavegan
if [ -z "${vocoder_eval_checkpoint}" ]; then
vocoder_eval_checkpoint="$(ls -dt "$expdir/$vocoder_model"/*.pkl | head -1 || true)"
fi
python $COMMON_ROOT/clean_checkpoint_state.py $vocoder_eval_checkpoint \
$dst_dir/vocoder_model.pth
cp $expdir/${vocoder_model}/config.yml $dst_dir/vocoder_model.yaml
# speaker info
for f in spks spk2id; do
cp data/$f $dst_dir/
done
echo "All the files are ready for TTS!"
echo "Please check the $dst_dir directory"
fi