-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
821 lines (639 loc) · 29.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
# -*- coding: utf-8 -*-
from tensorflow.python.util import deprecation
deprecation._PRINT_DEPRECATION_WARNINGS = False
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
from argparse import ArgumentParser, Namespace
from transformers.optimization import get_linear_schedule_with_warmup,get_constant_schedule_with_warmup
from transformers import AdamW
import pickle
import time
import torch
import math
from torch.nn import init
import json
import torch.nn as nn
import gc
import horovod.torch as hvd
############
from model import *
############
from focalloss import FocalLoss
from sklearn import metrics
import h5py
import numpy as np
import pandas as pd
from tqdm import tqdm
import logging
import time
import torch.onnx
import os
import psutil
import sys
from torch.utils.data import IterableDataset, DataLoader, get_worker_info
from tools import *
import random
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
tf.logging.set_verbosity(tf.logging.ERROR)
import warnings
warnings.filterwarnings('ignore')
os.chdir("")
class SparkIterableDataset(IterableDataset):
def __init__(self, file_list, shuffle=False, buffer_size=0, negative_sampling_ratio=1.0, min_neighbour_num=0):
self.file_list = file_list
self.shuffle = shuffle
self.buffer_size = buffer_size
self.buffer = []
self.negative_sampling_ratio = negative_sampling_ratio
self.min_neighbour_num=min_neighbour_num
def process_json_file(self):
if self.shuffle:
np.random.shuffle(self.file_list)
for file_path in self.file_list:
inst_list = []
for line in open(file_path, 'r', encoding='utf-8'):
inst = json.loads(line)
if self.negative_sampling_ratio < 1:
if inst['label'] == 0:
rand_n = random.randint(0, 100)
if rand_n > self.negative_sampling_ratio * 100:
continue
inst_list.append(inst)
if self.shuffle:
np.random.shuffle(inst_list)
for inst in inst_list:
if self.min_neighbour_num>0:
if sum(inst['x_in_vsg'])>self.min_neighbour_num and sum(inst['x_in_usg'])>self.min_neighbour_num:
yield inst
else:
yield inst
def __iter__(self):
if self.shuffle:
np.random.shuffle(self.file_list)
return self.process_json_file()
def worker_init_fn(_):
worker_info = get_worker_info()
dataset = worker_info.dataset
work_id = worker_info.id
file_list = dataset.file_list
split_size = math.ceil(len(file_list) / worker_info.num_workers)
dataset.file_list = dataset.file_list[work_id * split_size: (work_id + 1) * split_size]
node_num_sum = 0
def load_feat_dict_v2(filenames):
def piece_emb_read_and_decode(filenames, batch_size=50000):
def _parse_fn(record):
features = {
#"node": tf.FixedLenFeature([], tf.string),
"id": tf.FixedLenFeature([], tf.int64),
#"node_type": tf.FixedLenFeature([], tf.string),
"feature": tf.FixedLenFeature(shape=[args.feat_size], dtype=tf.float32), # 250
}
# parsed = tf.parse_single_example(record, features)
parsed = tf.parse_example(record, features)
# return parsed
return {#"node": parsed['node'],
"id": parsed['id'],
#"node_type": parsed['node_type'],
"feature": parsed['feature'],
}
# Extract lines from input files using the Dataset API, can pass one filename or filename list
dataset = tf.data.TFRecordDataset(
filenames) # .map(_parse_fn, num_parallel_calls=10).prefetch(1000) # multi-thread pre-process then prefetch
dataset = dataset.batch(batch_size).map(_parse_fn, num_parallel_calls=10).prefetch(100) # Batch size to use
iterator = dataset.make_one_shot_iterator()
data_set = iterator.get_next()
return data_set
feat_dict = {}
tf.reset_default_graph()
node_iterator = piece_emb_read_and_decode(filenames, batch_size=500000)
with tf.Session() as sess_0:
while True:
try:
# get_memory_info(logger)
node_data = sess_0.run([node_iterator])[0]
# logger.info(node_data)
ids = node_data['id']
features = node_data['feature']
# print(i)
# i+=1
for id, feature in zip(ids, features):
feat_dict[id] = feature
except tf.errors.OutOfRangeError:
break
print(len(feat_dict))
feat_matrix = np.zeros([len(feat_dict), args.feat_size]).astype(np.float32) # 250
for id, feature in feat_dict.items():
feat_matrix[id] = feature
return feat_matrix
def tm_collate_fn(data_list, feat_matrix, args):
global cnt
global big_cnt
global node_num_sum
batch_size=len(data_list)
max_len=args.max_node_num
feat_dim = feat_matrix.shape[1]
batch_x = torch.zeros(batch_size, max_len, feat_dim)
batch_adj = torch.zeros(batch_size, max_len,max_len)
batch_x_mask = torch.zeros(batch_size,max_len)
batch_x_type = torch.ones(batch_size, max_len)*args.node_type_num#
batch_x_in_vsg = torch.zeros(batch_size, max_len)
batch_x_in_usg = torch.zeros(batch_size, max_len)
batch_isout = torch.zeros(batch_size,max_len)
batch_y = torch.zeros(batch_size)
for i,inst in enumerate(data_list):
x, y, edge_index, isout, x_type, x_in_vsg, x_in_usg= inst['x'], inst['label'], inst['edge_index'], inst[
'isout'], inst['x_type'], inst['x_in_vsg'], inst['x_in_usg']
x_feat = feat_matrix[x]
x_num = len(x)
if len(edge_index)<2:
edge_adj = torch.zeros(max_len, max_len)
else:
edge_index = torch.tensor(edge_index, dtype=torch.long).reshape(2, -1)
edge_adj = torch.zeros(max_len, max_len)
edge_adj[edge_index[0], edge_index[1]] = 1
assert sum(isout)==2
if edge_adj.max()>1:
print(edge_adj)
cnt+=1
node_num_sum+=len(x)
if len(x)>args.max_node_num:
big_cnt+=1
if is_master:
print(len(x),big_cnt,cnt,node_num_sum/cnt)
if len(x)>max_len:
print(len(x))
raise ValueError('Node Number exceed!')
batch_x[i,:x_num,:]=torch.tensor(x_feat)
batch_adj[i,:max_len,:max_len]=edge_adj
batch_x_mask[i,:x_num]=1
batch_x_type[i,:x_num]=torch.tensor(x_type)
batch_x_in_usg[i,:x_num]=torch.tensor(x_in_usg)
batch_x_in_vsg[i,:x_num]=torch.tensor(x_in_vsg)
batch_isout[i,:x_num]=torch.tensor(isout)
batch_y[i]=y
return batch_x, batch_adj, batch_x_mask, batch_x_type, batch_x_in_vsg, batch_x_in_usg, batch_isout, batch_y.bool()
def get_model(args):
if args.model_name =='transformer':
model = Transformer_Model(args, trace_func=logger.info,rank=hvd_rank)
else:
raise ValueError('Model name Error')
return model
def barrier(hvd):
hvd.allreduce(torch.tensor(0), name='barrier')
def parse_args():
parser = ArgumentParser()
parser.add_argument('--config_path', type=str, default='config.json', help='config path')
parser.add_argument('--data_piece_num', type=int, default=8, help='Data Piece Number')
parser.add_argument('--val', type=bool, default=True, help='whether validation')
parser.add_argument('--test', type=bool, default=True, help='whether testing')
parser.add_argument('--edge_mode', type=str, default='addsparse', help='use dataset with added edges')
parser.add_argument('--flag', type=str, default='default', help='any description')
parser.add_argument('--flag2', type=str, default='default', help='any description')
parser.add_argument('--max_node_num', type=int, default=602, help='maximum node number')
parser.add_argument('--train_dh_range', type=str, default='0_12', help='any description')
parser.add_argument('--val_dh_range', type=str, default='12_24', help='any description')
parser.add_argument('--test_dh_range', type=str, default='12_24', help='any description')
parser.add_argument('--train_ds', type=str, default='offline/20210219dh', help='any description')
parser.add_argument('--val_ds', type=str, default='offline/20210219dh', help='any description')
parser.add_argument('--test_ds', type=str, default='offline/20210219dh', help='any description')
parser.add_argument('--min_neb_num', type=int, default=0, help='the minimize node number of each subgraph')
parser.add_argument('--feat_size', type=int, default=250, help='feature size')
parser.add_argument('--att_score', type=bool, default=False, help='whether output attention score')
# model parameters
parser.add_argument('--model_name', type=str, default='RGCN_Rec', help='Model name')
parser.add_argument('--hidden_size', type=int, default=100, help='hidden size')
parser.add_argument('--gnn_num', type=int, default=3, help='gnn layer number')
parser.add_argument('--gnn_type', type=str, default='rgcn', help='type of gnn layers')
parser.add_argument('--cross_type', type=str, default='hgt', help='type of cross layers')
parser.add_argument('--out_size', type=int, default=1, help='output size, 1 for sigmoid')
parser.add_argument('--node_type_num', type=int, default=4, help='the number of node type')
parser.add_argument('--dropout_rate', type=float, default=0.1, help='dropout rate')
parser.add_argument('--loss_func', type=str, default='BCE', help='loss function')
parser.add_argument('--pool_type',type=str,default='split',help='pooling function')
parser.add_argument('--feature_mode',type=str, default='dense+sparse',help='whether use dense or sparse features')
parser.add_argument('--pos_encoding',type=int,default=1,help='whether use graph position encoding')
parser.add_argument('--use_ffn',type=int,default=1,help='whether use pos_ffn layer')
parser.add_argument('--head_masks',type=str,default='adj+sparse+full+full',help='multi-head mask types')
# training parameters
parser.add_argument('--optimizer',type=str, default='adam',help='name of the optimizer')
parser.add_argument('--scheduler', type=str, default='none',help='name of the scheduler')
parser.add_argument('--batch_size', type=int, default=256, help='Batch Size')
parser.add_argument('--epoch_num', type=int, default=10, help='Epoch Number')
parser.add_argument('--negative_sampling_ratio', type=float, default=1.0,
help='sampling ratio of negative instances')
parser.add_argument('--rand_seed', type=int, default=1025, help='ranndo')
# parser.add_argument('--val_ratio',type=float, default=0.05, help='the ratio of validation set')
args = parser.parse_args()
config_path = '/apdcephfs/private_erxuemin/erxuemin/rec_project/wechat_project/config.json'
if os.path.exists(config_path) and False:
with open(config_path) as f:
config = json.load(f)
for key, value in config.items():
setattr(args, key, value)
model_path = '../model/checkpoint_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s.pt' % \
(args.flag,
args.train_ds.replace('/',''),
args.train_dh_range,
args.val_ds.replace('/', ''),
args.val_dh_range,
args.max_node_num,
args.gnn_type,
args.gnn_num,
args.hidden_size,
args.head_masks,
args.pool_type,
args.loss_func,
args.min_neb_num
)
general_model_path = '../model/checkpoint_%s_%s_%s_%s_%s_%s_%s.pt' % \
('general',
args.max_node_num,
args.gnn_type,
args.gnn_num,
args.hidden_size,
args.head_masks,
args.pool_type
)
setattr(args, 'model_path', model_path)
setattr(args, 'general_model_path', general_model_path)
return args
def get_logger(args):
log_file_path = "/apdcephfs/private_erxuemin/erxuemin/rec_project/wechat_project/log/%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s.log.running" % (
args.flag,
time.strftime("%m-%d-%H-%M", time.localtime()),
args.head_masks,
args.model_name,
args.feature_mode,
args.max_node_num,
args.gnn_type,
args.pool_type,
args.gnn_num,
args.pos_encoding,
args.use_ffn,
args.hidden_size,
args.negative_sampling_ratio,
args.dropout_rate,
args.loss_func)
setattr(args, 'log_tmp_name',log_file_path)
logging.basicConfig(filename=log_file_path, format='%(asctime)s,[:%(lineno)d] %(message)s', datefmt="%H:%M:%S")
logging.getLogger().setLevel(logging.INFO)
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.setFormatter(logging.Formatter('%(asctime)s,[:%(lineno)d] %(message)s',"%H:%M:%S"))
logger = logging.getLogger()
logger.addHandler(stream_handler)
return logger
def get_loss_func(args):
if args.loss_func == 'BCE':
criterion = nn.BCEWithLogitsLoss()
args.out_size = 1
elif args.loss_func == 'Focal':
criterion = FocalLoss()
args.out_size = 1
elif args.loss_func == 'softmax':
criterion = nn.CrossEntropyLoss()
args.out_size = 2
else:
raise ValueError('loss function name error!')
return criterion
def get_optimizer(optim_name, model):
if optim_name == 'adam':
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()),
lr=1e-3 * 2)
elif optim_name == 'adamw':
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': 0.01},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=1e-5*hvd_size*(args.batch_size/128))
else:
raise ValueError('optimizer name error')
return optimizer
def get_scheduler(sche_name, optimizer, num_warmup_steps):
if sche_name=='constant':
scheduler = get_constant_schedule_with_warmup(optimizer, num_warmup_steps)
else:
raise ValueError('scheduler name error')
return scheduler
def evaluation_v2(feat_path, data_path,dh_range, model, feat_matrix=None):
if feat_matrix is None:
feat_matrix = get_feat_matrix(feat_path, hvd_rank, False)
#if is_master:
# get_memory_info(logger)
if is_master:
logger.info(data_path)
barrier(hvd)
data_files = gen_input_fileds_with_hours(data_path,dh_range)
if hvd_size > 8:
node_num = int(hvd_size / 8)
file_per_rank = len(data_files) / node_num
node_rank = int(hvd_rank / 8)
data_files = data_files[int(node_rank*file_per_rank):int((node_rank+1)*file_per_rank)]
#logger.info('Rank %s,Eval_%s, [%s,%s]' %(hvd_rank,hvd_local_rank,int(node_rank*file_per_rank),int((node_rank+1)*file_per_rank)))
eval_batch_size = 2*args.batch_size
barrier(hvd)
data_dataset = SparkIterableDataset(data_files,min_neighbour_num=args.min_neb_num)
data_loader = DataLoader(data_dataset, batch_size=eval_batch_size, num_workers=8,
worker_init_fn=worker_init_fn,
collate_fn=lambda x: tm_collate_fn(x, feat_matrix,args))
barrier(hvd)
labels = []
probs = []
total_loss = 0
with torch.no_grad():
batch_index = 0
model.eval()
for batch in data_loader: # tqdm(test_loader):
batch_index += 1
batch = [item.to(device) for item in batch]
batch_y = batch[-1]
outputs = model(*batch[:-1])
if outputs.shape[1] == 2:
loss = criterion(outputs, batch_y)
probs.extend(softmax(outputs)[:, 1].reshape(-1).tolist())
else:
outputs = outputs.reshape(-1)
loss = criterion(outputs, batch_y.float())
probs.extend(sigmoid(outputs).tolist())
total_loss += loss.item()
labels.extend(batch_y.tolist())
if is_master:
if batch_index % 200 == 1:
logger.info(
'{} instance used, testing loss: {:.4f},{:.4f}'.format(batch_index * eval_batch_size,
total_loss / (batch_index),
loss.item()))
predicts = [int(p > 0.5) for p in probs]
del (feat_matrix)
gc.collect()
barrier(hvd)
if len(data_files) == 256:
all_labels = np.array(labels)
all_probs = np.array(probs)
fpr, tpr, thresholds = metrics.roc_curve(all_labels, all_probs, pos_label=1)
barrier(hvd)
logger.info('rank %s: AUC %s' % (hvd_rank, metrics.auc(fpr, tpr)))
barrier(hvd)
# logger.info('Gathering...')
predicts_list = hvd.allgather_object(predicts)
all_predicts = sum(predicts_list, [])
labels_list = hvd.allgather_object(labels)
all_labels = sum(labels_list, [])
probs_list = hvd.allgather_object(probs)
all_probs = sum(probs_list, [])
all_predicts = np.array(all_predicts)
all_labels = np.array(all_labels)
all_probs = np.array(all_probs)
fpr, tpr, thresholds = metrics.roc_curve(all_labels, all_probs, pos_label=1)
barrier(hvd)
if is_master:
logger.info('All Accuracy: %s' % ((all_predicts == all_labels).sum() / all_predicts.shape[0]))
logger.info('All AUC %s' % metrics.auc(fpr, tpr))
logger.info('All Postive samples %s, Negative samples %s, all %s' % (
all_labels.sum(), len(all_labels) - all_labels.sum(), len(all_labels)))
barrier(hvd)
return metrics.auc(fpr, tpr), all_predicts, all_labels, all_probs
def train():
#if __name__ == '__main__':
set_random_seeds(args.rand_seed + hvd_rank)
if is_master:
logger.info('Process Number: %s' % hvd_size)
# =============================Model Preparation Start=======================
early_stopping = EarlyStopping(patience=3, verbose=True, path=args.model_path, trace_func=logger.info,
rank=hvd_rank)
barrier(hvd)
model = get_model(args)
model = model.to(device)
barrier(hvd)
optimizer = get_optimizer(args.optimizer, model)
# ++++++++++++++++++Horovod Distributed Module+++++++++++++++++++
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())
if args.scheduler!='none':
scheduler = get_scheduler(args.scheduler,optimizer,num_warmup_steps=500)
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
# ++++++++++++++++++Horovod Distributed Module+++++++++++++++++++
# =============================Model Preparation End=======================
root_path = "%s/%s" % (data_base_path, train_ds)
piece_path_list = os.listdir(root_path)
piece_num = len(piece_path_list)//8 * 8
piece_id_list = [i for i in range(hvd_local_rank,piece_num,8)]
#print(piece_id_list)
local_piece_num = len(piece_id_list)
barrier(hvd)
train_cnt = 0
for t in range(args.epoch_num):
train_cnt += 1
for k,piece_id in enumerate(piece_id_list):
if is_master:
logger.info('Epoch %s........%s/%s....................' % (t,k+1,local_piece_num))
# =============================Training data loading start==============================
# if is_master:
barrier(hvd)
if is_master:
logger.info(root_path)
#加载特征矩阵
train_feat_matrix = get_feat_matrix(root_path + '/data_%s/node_feats.tfrecord/' % piece_id, hvd_rank, True)
barrier(hvd)
#加载数据
train_path = root_path + '/data_%s/train.json/' % piece_id
if is_master:
logger.info(train_path)
train_files = gen_input_fileds_with_hours(train_path,train_dh_range) #
if is_master:
logger.info('total train files count: %s'%len(train_files) )
if hvd_size>8:
node_num =int(hvd_size/8)
file_per_rank = len(train_files)/node_num
node_rank = int(hvd_rank/8)
train_files=train_files[int(node_rank*file_per_rank):int((node_rank+1)*file_per_rank)]
#if is_master:
# get_memory_info(logger)
#logger.info('rank %s, train_%s [%s,%s]' % (hvd_rank,hvd_local_rank,int(node_rank*file_per_rank),int((node_rank+1)*file_per_rank)))
barrier(hvd)
#
train_dataset = SparkIterableDataset(train_files, shuffle=True,
negative_sampling_ratio=args.negative_sampling_ratio,min_neighbour_num=args.min_neb_num)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=8,
worker_init_fn=worker_init_fn,
collate_fn=lambda x: tm_collate_fn(x, train_feat_matrix,args))
barrier(hvd)
model.train()
total_loss = 0
batch_index = 0
labels = []
flag=0.0
# with torch.autograd.set_detect_anomaly(True):
for i, batch in enumerate(train_loader):
flag = hvd.allreduce(torch.tensor(flag), name='train_barrier').item()
if flag>0:
#logger.info('rank %s break' %hvd_rank)
break
optimizer.zero_grad()
#batch2 = [item.clone() for item in batch]
batch = [item.to(device) for item in batch]
batch_y = batch[-1]
try:
outputs = model(*batch[:-1])
if outputs.shape[1] == 2:#CE
loss = criterion(outputs, batch_y)
else:
outputs = outputs.reshape(-1) # nx1 BCE
loss = criterion(outputs, batch_y.float())
#print(loss)
loss.backward()
except:
#model.cpu()
#batch2 = [item.clone().cpu() for item in batch]
#print(batch2[1])
#f=open('errorbatch.pkl','wb')
#pickle.dump(batch2,f)
#f.close()
#outputs = model(*batch2[:-1])
#if outputs.shape[1] == 2:#CE
# loss = criterion(outputs, batch_y.cpu())
#else:
# outputs = outputs.reshape(-1) # nx1 BCE
# loss = criterion(outputs, batch_y.cpu().float())
raise ValueError('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx')
optimizer.step()
if args.scheduler != 'none':
scheduler.step()
total_loss += loss.item()
batch_index += 1
labels.extend(batch_y.tolist())
if is_master:
if i % 400 == 0:
logger.info('{} instance used, training loss: {:.4f},{:.4f}'.format(batch_index * args.batch_size,
total_loss / (batch_index),
loss.item()))
#if i==10:#=========================
# break#========================
if flag==0:#first
logger.info('rank %s first end' % hvd_rank)
flag=hvd.allreduce(torch.tensor(1.0), name='train_barrier').item()
#logger.info('iteration number: %s %s' %(i,flag))
barrier(hvd)
pos_num=sum(labels)
neg_num = len(labels)-sum(labels)
all_num = len(labels)
pos_num_list=hvd.allgather_object(pos_num)
neg_num_list=hvd.allgather_object(neg_num)
all_num_list=hvd.allgather_object(all_num)
if is_master:
logger.info('Training Loss: %s' % (total_loss / (batch_index)))
#for i in range(len(pos_num_list)):
# logger.info('rank %s, Postive samples %s, Negative samples %s, all %s' %(i, pos_num_list[i],neg_num_list[i],all_num_list[i]))
logger.info('ALL, Postive samples %s, Negative samples %s, all %s' % (
sum(pos_num_list), sum(neg_num_list), sum(all_num_list)))
del (train_feat_matrix)
gc.collect()
barrier(hvd)
#================================================================================
if val_ds:
val_root_path = "%s/%s" % (data_base_path, val_ds)
val_feat_path = val_root_path + '/node_feats.tfrecord/' # % hvd_local_rank
val_data_path = val_root_path + '/train.json/' # % hvd_local_rank
if hvd_rank == 0:
logger.info('Validation.....................')
metric = evaluation_v2(val_feat_path, val_data_path, val_dh_range, model)[0]
early_stopping(metric, model)
if early_stopping.early_stop:
if hvd_rank == 0:
logger.info('Early stopping...........................')
break
barrier(hvd)
if is_master and test_ds:
for key, val in vars(args).items():
logger.info(key + ':' + str(val))
logger.info("+++++++++++++++++++++++++++++++++++++++++++++++++++")
score_list = early_stopping.score_list
for cnt, score in score_list:
logger.info('Epoch %s: AUC: %s' % (cnt, score))
score_list = [p[1] for p in score_list]
score_mean = np.mean(score_list)
logger.info('Average val AUC: %s' % score_mean)
logger.info('Best val AUC: %s, train_cnt: %s' % (early_stopping.best_score, early_stopping.best_cnt))
logger.info("+++++++++++++++++++++++++++++++++++++++++++++++++++")
os.system('mv %s %s' %(args.log_tmp_name, args.log_tmp_name.replace('.running','')))
result_path = write_auc_results(early_stopping.best_score, score_list)
if test_ds and False:
test_score = test()
if is_master and test_ds and False:
f = open(result_path,'a')
f.write('Test AUC score %s' %test_score)
f.close()
def test():
logger.info('Testing......')
model = get_model(args)
model.load_state_dict(torch.load(args.model_path))
model = model.to(device)
test_root_path = "%s/%s" % (data_base_path, test_ds)
test_feat_path = test_root_path + '/data_%s/node_feats.tfrecord/' % hvd_local_rank
test_data_path = test_root_path + '/data_%s/train.json/' % hvd_local_rank
metric = evaluation_v2(test_feat_path, test_data_path, test_dh_range,model)[0]
if is_master:
logger.info('Test AUC: %s' %metric)
return metric
def save_feat_matrix2hdf5(ds, replace=False):
if hvd_size<16:
return
root_path = "%s/%s" % (data_base_path, ds)
piece_path_list = os.listdir(root_path)
data_piece_num = len(piece_path_list)//8 * 8
times = hvd_size//data_piece_num
if hvd_rank not in [times*i for i in range(data_piece_num)]:
return
root_path = "%s/%s" % (data_base_path, ds)
path = root_path + '/data_%s/node_feats.tfrecord/' % (hvd_rank//times)
hdf5_path = path.replace('node_feats.tfrecord/', 'node_feats.h5')
if os.path.exists(hdf5_path):
if replace:
os.remove(hdf5_path)
else:
return
logger.info('Saving... rank %s, piece id %s' % (hvd_rank, hvd_rank//times))
node_feat_files = gen_input_fileds(path)
feat_matrix = load_feat_dict_v2(node_feat_files) #
if hvd_rank == 0:
get_memory_info(logger)
save_feat2hdf5(hdf5_path, feat_matrix)
del (feat_matrix)
gc.collect()
def write_auc_results(best_auc,auc_list):
results_dir = ''
result_path = '%s/%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s'%(results_dir,best_auc,args.flag,args.gnn_type,args.pool_type,args.hidden_size,
train_ds.replace('/',''),train_dh_range[0],train_dh_range[1],
val_ds.replace('/',''),val_dh_range[0],val_dh_range[1])
f_res = open(result_path,'w')
for i,auc in enumerate(auc_list):
f_res.write('Epoch %s, AUC: %s\n'%(i,auc))
f_res.close()
return result_path
args = parse_args()
logger = get_logger(args)
hvd.init()
hvd_rank = hvd.rank()
hvd_size = hvd.size()
hvd_local_rank = hvd.local_rank()
device = torch.device('cuda', hvd_local_rank)
is_master = (hvd_rank == 0)
criterion = get_loss_func(args)
sigmoid = nn.Sigmoid()
softmax = nn.Softmax()
data_base_path = '/apdcephfs/private_erxuemin/erxuemin/dataset/graph'
train_ds = args.train_ds
val_ds=args.val_ds
test_ds=args.test_ds
train_dh_range =[int(i) for i in args.train_dh_range.split('_')]
val_dh_range = [int(i) for i in args.val_dh_range.split('_')]
test_dh_range =[int(i) for i in args.test_dh_range.split('_')]
#
barrier(hvd)
if is_master:
for key, val in vars(args).items():
logger.info(key + ':' + str(val))
barrier(hvd)
if __name__ == '__main__':
train()