-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_joint.py
476 lines (381 loc) · 21.5 KB
/
train_joint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
from utils.calc_map import eval_det_multiprocessing, get_iou_obb
from utils.dataloader import ScanNetXYZProbMultiDataset
import torch
import hydra
from utils.minkunet import MinkUNet34C
import logging
import numpy as np
from tqdm import tqdm
import MinkowskiEngine as ME
import hv_cuda
import torch.nn as nn
import os
logger = logging.getLogger(__name__)
thresh_high = 60
thresh_low = 10
valid_ratio = 0.2
elimination = 2
class HVFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, points, xyz, scale, obj, res, num_rots):
ctx.save_for_backward(points, xyz, scale, obj, res, num_rots)
outputs = hv_cuda.forward(points, xyz, scale, obj, res, num_rots)
grid_obj, grid_rot, grid_scale = outputs
return grid_obj, grid_rot, grid_scale
@staticmethod
def backward(ctx, grad_obj, grad_rot, grad_scale):
d_points = d_res = d_num_rots = None
points, xyz, scale, obj, res, num_rots = ctx.saved_tensors
outputs = hv_cuda.backward(grad_obj.contiguous(), points, xyz, scale, obj, res, num_rots)
d_xyz_labels, d_scale_labels, d_obj_labels = outputs
# print(d_xyz_labels.sum(), d_scale_labels.sum(), d_obj_labels.sum())
return d_points, d_xyz_labels, d_scale_labels, d_obj_labels, d_res, d_num_rots
def unravel_index(index, shape):
out = []
for dim in reversed(shape):
out.append(index % dim)
index = index // dim
return tuple(reversed(out))
class HoughVoting(torch.nn.Module):
def __init__(self, res=0.03, num_rots=120):
super().__init__()
# dtype?
self.res = torch.tensor(res, dtype=torch.float32).cuda()
self.num_rots = torch.tensor(num_rots, dtype=torch.int32).cuda()
def forward(self, points, xyz, scale, obj):
return HVFunction.apply(points, xyz, scale, obj, self.res, self.num_rots)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def collate_fn(batch):
id_scans, coords, feats, xyz_labels, scale_labels, class_labels = list(zip(*batch))
# Generate batched coordinates
coords_batch = ME.utils.batched_coordinates(coords)
# Concatenate all lists
feats_batch = torch.from_numpy(np.concatenate(feats, 0)).float()
xyz_labels_batch = torch.from_numpy(np.concatenate(xyz_labels, 0)).float()
scale_labels_batch = torch.from_numpy(np.concatenate(scale_labels, 0)).float()
class_labels_batch = torch.from_numpy(np.concatenate(class_labels, 0)).long()
return id_scans, coords_batch, feats_batch, xyz_labels_batch, scale_labels_batch, class_labels_batch
def set_bn_momentum_default(bn_momentum):
def fn(m):
if isinstance(m, (ME.MinkowskiBatchNorm)):
m.momentum = bn_momentum
return fn
class BNMomentumScheduler(object):
def __init__(
self, model, bn_lambda, last_epoch=-1,
setter=set_bn_momentum_default
):
if not isinstance(model, nn.Module):
raise RuntimeError(
"Class '{}' is not a PyTorch nn Module".format(
type(model).__name__
)
)
self.model = model
self.setter = setter
self.lmbd = bn_lambda
self.step(last_epoch + 1)
self.last_epoch = last_epoch
def step(self, epoch=None):
if epoch is None:
epoch = self.last_epoch + 1
self.last_epoch = epoch
self.model.apply(self.setter(self.lmbd(epoch)))
def get_current_lr(epoch):
lr = BASE_LEARNING_RATE
for i,lr_decay_epoch in enumerate(LR_DECAY_STEPS):
if epoch >= lr_decay_epoch:
lr *= LR_DECAY_RATES[i]
return lr
def adjust_learning_rate(optimizer, epoch):
lr = get_current_lr(epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def nms(boxes, scores, overlap_threshold):
I = np.argsort(scores)
pick = []
while (I.size!=0):
last = I.size
i = I[-1]
pick.append(i)
suppress = [last-1]
for pos in range(last-1):
j = I[pos]
o = get_iou_obb(boxes[i], boxes[j])
if (o>overlap_threshold):
suppress.append(pos)
I = np.delete(I,suppress)
return pick
def compute_map(pred_map_cls, gt_map_cls, ovthresh=0.5):
rec, prec, ap = eval_det_multiprocessing(pred_map_cls, gt_map_cls, ovthresh=ovthresh, get_iou_func=get_iou_obb)
ret_dict = {}
for key in sorted(ap.keys()):
clsname = str(key)
ret_dict['%s Average Precision'%(clsname)] = ap[key]
ret_dict['mAP'] = np.mean(list(ap.values()))
rec_list = []
for key in sorted(ap.keys()):
clsname = str(key)
try:
ret_dict['%s Recall'%(clsname)] = rec[key][-1]
rec_list.append(rec[key][-1])
except:
ret_dict['%s Recall'%(clsname)] = 0
rec_list.append(0)
ret_dict['AR'] = np.mean(rec_list)
return ret_dict
idx2name = {
0: 'others',
1: '03211117',
2: '04379243',
3: '02808440',
4: '02747177',
5: '04256520',
6: '03001627',
7: '02933112',
8: '02871439'
}
@hydra.main(config_name='config', config_path='config')
def main(cfg):
global BN_MOMENTUM_INIT
global BN_MOMENTUM_MAX
global BN_DECAY_STEP
global BN_DECAY_RATE
global BASE_LEARNING_RATE
global LR_DECAY_STEPS
global LR_DECAY_RATES
BN_MOMENTUM_INIT = 0.5
BN_MOMENTUM_MAX = 0.001
BN_DECAY_STEP = cfg.opt.bn_decay_step
BN_DECAY_RATE = cfg.opt.bn_decay_rate
BASE_LEARNING_RATE = cfg.opt.learning_rate
LR_DECAY_STEPS = [int(x) for x in cfg.opt.lr_decay_steps.split(',')]
LR_DECAY_RATES = [float(x) for x in cfg.opt.lr_decay_rates.split(',')]
train_dataset = ScanNetXYZProbMultiDataset(cfg, training=True, augment=cfg.augment)
val_dataset = ScanNetXYZProbMultiDataset(cfg, training=False, augment=False)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=cfg.batch_size, shuffle=True, collate_fn=collate_fn, num_workers=cfg.num_workers, drop_last=True)
val_dataloader = torch.utils.data.DataLoader(val_dataset, collate_fn=collate_fn, shuffle=True, batch_size=1, num_workers=cfg.num_workers)
logger.info('Start training...')
nclasses = 9
# each class predict xyz and scale independently
model = MinkUNet34C(6 if cfg.use_xyz else 3, 6 * nclasses + nclasses + 1)
optimizer = torch.optim.Adam(
model.parameters(),
lr=cfg.opt.learning_rate,
weight_decay=cfg.weight_decay
)
bn_lbmd = lambda it: max(BN_MOMENTUM_INIT * BN_DECAY_RATE**(int(it / BN_DECAY_STEP)), BN_MOMENTUM_MAX)
bnm_scheduler = BNMomentumScheduler(model, bn_lambda=bn_lbmd, last_epoch=cfg.start_epoch-1)
hv = HoughVoting(cfg.scannet_res)
obj_criterion = torch.nn.CrossEntropyLoss()
model = model.cuda()
xyz_weights = torch.tensor([float(x) for x in cfg.xyz_component_weights.split(',')]).cuda()
meter = AverageMeter()
losses = {}
for epoch in range(cfg.start_epoch, cfg.max_epoch + 1):
# Training
adjust_learning_rate(optimizer, epoch)
bnm_scheduler.step() # decay BN momentum
model.train()
meter.reset()
with tqdm(enumerate(train_dataloader)) as t:
for i, data in t:
optimizer.zero_grad()
_, scan_points, scan_feats, scan_xyz_labels, scan_scale_labels, scan_class_labels = data
feats = scan_feats.reshape(-1, 6 if cfg.use_xyz else 3) # recenter to [-1, 1] ?
feats[:, -3:] = feats[:, -3:] * 2. - 1.
scan_input = ME.SparseTensor(feats, scan_points, device='cuda')
scan_output = model(scan_input)
class_label_idx = scan_class_labels.cuda().unsqueeze(-1).unsqueeze(-1).expand(-1, -1, 3)
class_label_idx[class_label_idx < 0] = 0 # since we have mask to filter out, just set to zero here
class_label_idx[class_label_idx == nclasses] = 0
scan_output_xyz = torch.gather(scan_output.F[:, :3 * nclasses].reshape(-1, nclasses, 3), 1, class_label_idx)[:, 0]
scan_output_scale = torch.gather(scan_output.F[:, 3 * nclasses:6 * nclasses].reshape(-1, nclasses, 3), 1, class_label_idx)[:, 0]
scan_output_class = scan_output.F[:, 6 * nclasses:]
mask = (scan_class_labels < nclasses) & (0 <= scan_class_labels)
loss_xyz = torch.zeros(()).cuda()
loss_scale = torch.zeros(()).cuda()
loss_class = torch.zeros(()).cuda()
if torch.any(mask):
if cfg.log_scale:
scan_scale_target = torch.log(scan_scale_labels[mask].cuda())
else:
scan_scale_target = scan_scale_labels[mask].cuda()
loss_scale = torch.mean((scan_output_scale[mask] - scan_scale_target) ** 2 * xyz_weights)
loss_xyz = torch.mean((scan_output_xyz[mask] - scan_xyz_labels[mask].cuda()) ** 2 * xyz_weights) # only optimize xyz when there are objects
loss_class = obj_criterion(scan_output_class, scan_class_labels.cuda())
loss_xyz *= cfg.xyz_factor
loss_scale *= cfg.scale_factor
losses['loss_xyz'] = loss_xyz
losses['loss_scale'] = loss_scale
losses['loss_class'] = loss_class
loss = torch.sum(torch.stack(list(losses.values())))
loss.backward()
# torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)
meter.update(loss.item())
t.set_postfix(loss=meter.avg, **dict([(k, v.item()) for (k, v) in losses.items()]))
optimizer.step()
if epoch % 10 == 0:
torch.save(model.state_dict(), 'epoch{}.pth'.format(epoch))
if epoch % 10 == 0:
# validation
model.eval()
meter.reset()
logger.info('epoch {} validation'.format(epoch))
pred_map_cls = {}
gt_map_cls = {}
cnt = 0
for scan_ids, scan_points, scan_feats, scan_xyz_labels, scan_scale_labels, scan_class_labels in tqdm(val_dataloader):
cnt += 1
id_scan = scan_ids[0]
feats = scan_feats.reshape(-1, 6 if cfg.use_xyz else 3) # recenter to [-1, 1]?
feats[:, -3:] = feats[:, -3:] * 2. - 1.
scan_input = ME.SparseTensor(feats, scan_points, device='cuda')
with torch.no_grad():
scan_output = model(scan_input)
scan_output_xyz = scan_output.F[:, :3 * nclasses]
scan_output_scale = scan_output.F[:, 3 * nclasses:6 * nclasses]
scan_output_class = scan_output.F[:, 6 * nclasses:]
class_label_idx = scan_output_class.argmax(-1).unsqueeze(-1).unsqueeze(-1).expand(-1, -1, 3)
class_label_idx[class_label_idx == nclasses] = 0
scan_output_xyz = torch.gather(scan_output_xyz.reshape(-1, nclasses, 3), 1, class_label_idx)[:, 0]
scan_output_scale = torch.gather(scan_output_scale.reshape(-1, nclasses, 3), 1, class_label_idx)[:, 0]
mask = (scan_class_labels < nclasses) & (0 <= scan_class_labels)
loss_xyz = torch.zeros(()).cuda()
loss_scale = torch.zeros(()).cuda()
loss_class = torch.zeros(()).cuda()
if cfg.log_scale:
scan_scale_target = torch.log(scan_scale_labels[mask].cuda())
else:
scan_scale_target = scan_scale_labels[mask].cuda()
loss_scale = torch.mean((scan_output_scale[mask] - scan_scale_target) ** 2 * xyz_weights)
loss_xyz = torch.mean((scan_output_xyz[mask] - scan_xyz_labels[mask].cuda()) ** 2 * xyz_weights) # only optimize xyz when there are objects
loss_class = obj_criterion(scan_output_class, scan_class_labels.cuda())
loss_xyz *= cfg.xyz_factor
loss_scale *= cfg.scale_factor
losses['loss_xyz'] = loss_xyz
losses['loss_scale'] = loss_scale
losses['loss_class'] = loss_class
curr_points = scan_points[:, 1:]
xyz_pred = scan_output_xyz
if cfg.log_scale:
scale_pred = torch.exp(scan_output_scale)
else:
scale_pred = scan_output_scale
class_pred = torch.argmax(scan_output_class[..., :-1], dim=-1)
prob_pred = torch.max(torch.softmax(scan_output_class, dim=-1)[..., :-1], dim=-1)[0]
with torch.no_grad():
grid_obj, grid_rot, grid_scale = hv(curr_points.to('cuda') * cfg.scannet_res, xyz_pred.contiguous(), scale_pred.contiguous(), prob_pred.contiguous())
map_scene = []
boxes = []
scores = []
probs = []
classes = []
scan_points = curr_points.to('cuda') * cfg.scannet_res
corners = torch.stack([torch.min(scan_points, 0)[0], torch.max(scan_points, 0)[0]])
l, h, w = 2, 2, 2
bbox_raw = torch.from_numpy(np.array([[l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2], [h/2,h/2,h/2,h/2,-h/2,-h/2,-h/2,-h/2], [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2]]).T).float()
while True:
cand = torch.stack(unravel_index(torch.argmax(grid_obj), grid_obj.shape))
cand_world = torch.tensor([corners[0, 0] + cfg.scannet_res * cand[0], corners[0, 1] + cfg.scannet_res * cand[1], corners[0, 2] + cfg.scannet_res * cand[2]]).cuda()
if grid_obj[cand[0], cand[1], cand[2]].item() < thresh_high:
break
grid_obj[max(cand[0]-elimination,0):cand[0]+elimination+1, max(cand[1]-elimination,0):cand[1]+elimination+1, max(cand[2]-elimination,0):cand[2]+elimination+1] = 0
rot_vec = grid_rot[cand[0], cand[1], cand[2]]
rot = torch.atan2(rot_vec[1], rot_vec[0])
rot_mat_full = torch.tensor([[torch.cos(rot), 0, -torch.sin(rot)], [0, 1, 0], [torch.sin(rot), 0, torch.cos(rot)]]).cuda()
scale_full = grid_scale[cand[0], cand[1], cand[2]]
# fast filtering
bbox = (rot_mat_full @ torch.diag(scale_full) @ bbox_raw.cuda().T).T
bounding_vol = (torch.stack([torch.min(bbox, 0)[0], torch.max(bbox, 0)[0]]) / cfg.scannet_res).int()
cand_coords = torch.stack(torch.meshgrid(torch.arange(bounding_vol[0, 0], bounding_vol[1, 0] + 1), torch.arange(bounding_vol[0, 1], bounding_vol[1, 1] + 1), torch.arange(bounding_vol[0, 2], bounding_vol[1, 2] + 1)), -1).reshape(-1, 3).cuda()
cand_coords = cand_coords + cand
cand_coords = torch.max(torch.min(cand_coords, torch.tensor(grid_obj.shape).cuda() - 1), torch.tensor([0, 0, 0]).cuda())
coords_inv = (((cand_coords - cand) * cfg.scannet_res) @ rot_mat_full) / scale_full
bbox_mask = (-1 < coords_inv[:, 0]) & (coords_inv[:, 0] < 1) \
& (-1 < coords_inv[:, 1]) & (coords_inv[:, 1] < 1) \
& (-1 < coords_inv[:, 2]) & (coords_inv[:, 2] < 1)
bbox_coords = cand_coords[bbox_mask]
coords_inv_world = ((scan_points - cand_world) @ rot_mat_full) / scale_full
bbox_mask_world = (-1 < coords_inv_world[:, 0]) & (coords_inv_world[:, 0] < 1) \
& (-1 < coords_inv_world[:, 1]) & (coords_inv_world[:, 1] < 1) \
& (-1 < coords_inv_world[:, 2]) & (coords_inv_world[:, 2] < 1)
# back project elimination: current off
# prob_delta = torch.zeros_like(prob_pred)
# prob_delta[bbox_mask_world] = prob_pred[bbox_mask_world]
# if not torch.all(prob_delta == 0):
# grid_obj_delta, _, _ = hv(scan_points.cuda(), xyz_pred.contiguous(), scale_pred.contiguous(), prob_delta.contiguous())
# grid_obj -= grid_obj_delta
grid_obj[bbox_coords[:, 0], bbox_coords[:, 1], bbox_coords[:, 2]] = 0
mask = prob_pred[bbox_mask_world] > 0.3
if torch.sum(mask) < valid_ratio * torch.sum(bbox_mask_world) or torch.sum(bbox_mask_world) < thresh_low:
continue
gt_coords = coords_inv_world[bbox_mask_world][mask]
error = torch.mean(torch.norm(xyz_pred[bbox_mask_world][mask] - gt_coords, dim=-1) * prob_pred[bbox_mask_world][mask]).item()
if error > 0.3:
continue
elems, counts = torch.unique(class_pred[bbox_mask_world][mask], return_counts=True)
best_class_idx = elems[torch.argmax(counts)].item()
best_class = idx2name[best_class_idx]
probmax = torch.max(prob_pred[bbox_mask_world])
bbox = (rot_mat_full @ torch.diag(scale_full) @ bbox_raw.cuda().T).T + cand_world
boxes.append(bbox.cpu().numpy())
scores.append(probmax.item())
probs.append(probmax.item())
classes.append(best_class_idx)
boxes = np.array(boxes)
scores = np.array(scores)
probs = np.array(probs)
classes = np.array(classes)
if len(classes) > 0:
for i in range(nclasses):
if (classes == i).sum() > 0:
boxes_cls = boxes[classes == i]
scores_cls = scores[classes == i]
probs_cls = probs[classes == i]
pick = nms(boxes_cls, scores_cls, 0.3)
for j in pick:
map_scene.append((idx2name[i], boxes_cls[j], probs_cls[j]))
pred_map_cls[id_scan] = map_scene
# read ground truth
lines = open(os.path.join(cfg.data.gt_path, '{}.txt'.format(id_scan))).read().splitlines()
map_scene = []
for line in lines:
tx, ty, tz, ry, sx, sy, sz = [float(v) for v in line.split(' ')[:7]]
category = line.split(' ')[-1]
bbox = (np.array([[np.cos(ry), 0, -np.sin(ry)], [0, 1, 0], [np.sin(ry), 0, np.cos(ry)]]) @ np.diag([sx, sy, sz]) @ bbox_raw.numpy().T).T + np.array([tx, ty, tz])
bbox_mat = np.eye(4)
bbox_mat[:3, :3] = np.array([[np.cos(ry), 0, -np.sin(ry)], [0, 1, 0], [np.sin(ry), 0, np.cos(ry)]]) @ np.diag([sx, sy, sz])
bbox_mat[:3, 3] = np.array([tx, ty, tz])
map_scene.append((category, bbox))
gt_map_cls[id_scan] = map_scene
loss = torch.sum(torch.stack(list(losses.values())))
meter.update(loss.item())
losses_numeral = dict([(k, v.item()) for (k, v) in losses.items()])
logger.info(', '.join([k + ': {' + k + '}' for k in losses_numeral.keys()]).format(**losses_numeral))
for thresh in [0.25, 0.5]:
print(thresh)
ret_dict = compute_map(pred_map_cls, gt_map_cls, thresh)
if cfg.category != 'all':
logger.info('{} Recall: {}'.format(cfg.category, ret_dict['{} Recall'.format(cfg.category)]))
logger.info('{} Average Precision: {}'.format(cfg.category, ret_dict['{} Average Precision'.format(cfg.category)]))
else:
for k in range(nclasses):
logger.info('{} Recall: {}'.format(idx2name[k], ret_dict['{} Recall'.format(idx2name[k])]))
logger.info('{} Average Precision: {}'.format(idx2name[k], ret_dict['{} Average Precision'.format(idx2name[k])]))
logger.info('mean Average Precision: {}'.format(ret_dict['mAP']))
if __name__ == "__main__":
main()