-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrp_main.py
69 lines (58 loc) · 2.35 KB
/
rp_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from cfg.config import cfg, cfg_from_file
from rp_dataset import RPDataset
from rp_trainer import condGANTrainer as Trainer
import os
import sys
import time
import random
import pprint
import argparse
import numpy as np
import torch
dir_path = (os.path.abspath(os.path.join(os.path.realpath(__file__), '././.')))
sys.path.append(dir_path)
def parse_args():
parser = argparse.ArgumentParser(description='this is for calculating the R precision')
parser.add_argument('--cfg', dest='cfg_file',
help='optional config file',
default='..', type=str)
parser.add_argument('--w', type=int, default=100, help='manual seed')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
if args.cfg_file is not None:
cfg_from_file(args.cfg_file)
assert torch.cuda.is_available(), 'No GPUs..'
print('Using config:')
pprint.pprint(cfg)
if not cfg.TRAIN.FLAG:
args.manualSeed = 100
elif args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
np.random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
if cfg.CUDA:
torch.cuda.manual_seed_all(args.manualSeed)
split_dir, bshuffle = 'train', True
if not cfg.TRAIN.FLAG:
split_dir = 'test'
bshuffle = False
output_dir = '%s/%s_%s/%s' % (cfg.OUTPUT_DIR, cfg.DATASET_NAME, cfg.GAN.GNET, cfg.CONFIG_NAME)
encoder_dir = '%s/%s_%s/Model' % (cfg.OUTPUT_DIR, cfg.DATASET_NAME, cfg.ENCODER1)
img2textfeature_file = os.path.join(encoder_dir, 'testimg2textfeature.pickle')
print(img2textfeature_file)
assert os.path.isfile(img2textfeature_file), 'run rp_pre_extraction first!'
# Get data loader
imsize = cfg.TREE.BASE_SIZE * (2 ** (cfg.TREE.BRANCH_NUM - 1))
dataset = RPDataset(os.path.join(cfg.DATA_DIR, cfg.DATASET_NAME), base_size=cfg.TREE.BASE_SIZE, transform=None)
assert dataset
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=cfg.TRAIN.BATCH_SIZE,
drop_last=True, shuffle=bshuffle, num_workers=int(cfg.WORKERS), worker_init_fn=worker_init_fn)
algo = Trainer(output_dir, dataloader, dataset.n_words, dataset.ixtoword)
start_t = time.time()
algo.R_precision(split_dir)
end_t = time.time()
print('Total time for training:', end_t - start_t)