-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpredict.py
141 lines (107 loc) · 4.94 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Without modification for combined categories and adjusted loss
# on dev set only
# random crop not turned off yet
# haven't check logic for day/night yet
from __future__ import print_function, division
import argparse
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
from torchvision import datasets, models, transforms
from torch.utils.data import Dataset, DataLoader
import pandas as pd
from PIL import Image, ImageFile
from tqdm import tqdm
from WildAnimalDataset import WildAnimalDataset
# Ignore warnings
import warnings
warnings.filterwarnings("ignore")
ImageFile.LOAD_TRUNCATED_IMAGES = True
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=16, help='training batch size')
parser.add_argument('--photo_path', type=str, default='/data/cs341-bucket/camera_B2', help='photo path')
parser.add_argument('--meta_path', type=str, default='/data/cs341-bucket/camera_B2/camera_B2.xlsx', help='metadata path')
# parser.add_argument('--photo_path', type=str, default='/data/data_combined_final/dev_signs', help='photo path')
# parser.add_argument('--meta_path', type=str, default='/data/metadata/combined_final_dev.xlsx', help='metadata path')
parser.add_argument('--threshold', type=float, default=0, help='threshold for settling prediction')
def obtain_inputs_parameters(args):
meta_path = args.meta_path
photo_path = args.photo_path
data_transform = transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize([0.31293, 0.30621,0.28194], [0.18229829,0.18250624,0.1759812])
])
animal_dataset = WildAnimalDataset(meta_path, photo_path, data_transform)
dataloader = DataLoader(animal_dataset, args.batch_size, shuffle=False, num_workers=4)
return dataloader
def read_trained_single_model(args, use_gpu, n_total_categories):
model = models.densenet161(pretrained = True)
num_ftrs = model.classifier.in_features
model.classifier = nn.Linear(num_ftrs, n_total_categories)
model.train(False)
if use_gpu:
model = model.cuda()
model_checkpoint_path = 'best_model.pt'
print("model_checkpoint_path: " + model_checkpoint_path)
model.load_state_dict(torch.load(model_checkpoint_path))
return model
def create_single_model_confusion(model, n_total_categories, dataloader, use_gpu, args):
confusion = torch.zeros(n_total_categories, n_total_categories)
model.train(False)
for data in tqdm(dataloader):
inputs, labels = data
labels = labels.view(-1)
if use_gpu:
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
outputs = model(inputs)
_, preds = torch.max(outputs.data, 1)
for i, j in zip(preds, labels.data):
confusion[i,j] += 1
return confusion
def write_pred(args, model, dataloader, use_gpu, class_names):
meta = pd.io.excel.read_excel(args.meta_path)
pred_settled = pd.DataFrame(columns = list(meta.columns.values) + ['pred'])
pred_unsettled = pd.DataFrame(columns = list(meta.columns.values) + ['pred'])
settled = 0
unsettled = 0
model.train(False)
for inputs, _ in tqdm(dataloader):
if use_gpu:
inputs = Variable(inputs.cuda())
else:
inputs = Variable(inputs)
m = nn.Softmax(dim = 1)
outputs = m(model(inputs))
outputs = (outputs.data).cpu().numpy()
preds = np.argsort(outputs, 1)[:,-1:]
for i in range(preds.shape[0]):
curr = meta.loc[settled + unsettled]
curr['pred'] = class_names[preds[i,-1]]
conf = outputs[i, preds[i,-1]]
if conf > args.threshold:
settled += 1
pred_settled.loc[settled] = curr
else:
unsettled += 1
pred_unsettled.loc[unsettled] = curr
pred_settled.to_csv('settled.csv', index = False)
pred_unsettled.to_csv('unsettled.csv', index = False)
def main():
args = parser.parse_args()
n_total_categories = 24
use_gpu = torch.cuda.is_available()
class_names = ["None", "Black-tailed deer", "Human", "Black-tailed Jackrabbit", "Coyote",
"Big Category", "Brush Rabbit", "Western scrub-jay","Bobcat", "blank1","blank2",
"California quail","Raccoon", "Mountain lion","Striped skunk", "Wild turkey",
"Gray Fox", "Virginia Opossum", "Stellers jay", "Western Gray Squirrel",
"Dusky-footed Woodrat", "Great blue heron", "Fox Squirrel", "California Ground Squirrel"]
dataloader = obtain_inputs_parameters(args)
model = read_trained_single_model(args, use_gpu, n_total_categories)
write_pred(args, model, dataloader, use_gpu, class_names)
if __name__ == "__main__":
main()